Minor refactor and cleanup

This commit is contained in:
Xun Zhang 2024-01-02 14:02:22 -08:00
parent b972a8bab6
commit e0a761a184
3 changed files with 130 additions and 36 deletions

View File

@ -1,8 +1,40 @@
#define CHANNELS 4 #define CHANNELS 4
#define SAMPLE_CACHE_LENGTH 16 // Must be power of 2 (8, 16, etc.); See cache.h for implementation
#define HIT_THRES 750 // The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
#define RESET_THRES 300 // changed SAMPLE_CACHE_LENGTH, you must adjust thresholds here
// SAMPLE_CACHE_LENGTH must be power of 2 (8, 16, 32, etc.)
// See cache.h for implementation
#define SAMPLE_CACHE_LENGTH 16
// The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
// changed SAMPLE_CACHE_LENGTH, you should also adjust thresholds
#define HIT_THRES 750
#define RESET_THRES 200
// Sensitivity multipliers for each channel, 1.0 as the baseline
#define L_DON_SENS 1.0
#define L_KAT_SENS 1.0
#define R_DON_SENS 1.0
#define R_KAT_SENS 1.0
// Input pins for each channel
#define L_DON_IN A0
#define L_KAT_IN A1
#define R_DON_IN A2
#define R_KAT_IN A3
// Output LED pins for each channel (just for visualization)
#define L_DON_LED 5
#define L_KAT_LED 6
#define R_DON_LED 7
#define R_KAT_LED 8
// Keyboard output for each channel
#define L_DON_KEY 'f'
#define L_KAT_KEY 'd'
#define R_DON_KEY 'j'
#define R_KAT_KEY 'k'
// Enable debug mode to view analog input values from the Serial
// Enabling this also disables the keyboard simulation
#define DEBUG 0 #define DEBUG 0
#include <Keyboard.h> #include <Keyboard.h>
@ -10,8 +42,6 @@
#include "cache.h" #include "cache.h"
unsigned long int lastTime;
Cache<int, SAMPLE_CACHE_LENGTH> inputWindow[CHANNELS]; Cache<int, SAMPLE_CACHE_LENGTH> inputWindow[CHANNELS];
unsigned long power[CHANNELS]; unsigned long power[CHANNELS];
unsigned long lastPower[CHANNELS]; unsigned long lastPower[CHANNELS];
@ -19,11 +49,10 @@ unsigned long lastPower[CHANNELS];
bool triggered; bool triggered;
unsigned long triggeredTime[CHANNELS]; unsigned long triggeredTime[CHANNELS];
const byte inPins[] = {A0, A1, A2, A3}; // L don, L kat, R don, R kat const byte inPins[] = {L_DON_IN, L_KAT_IN, R_DON_IN, R_KAT_IN};
const byte outPins[] = {5, 6, 7, 8}; // LED visualization (optional) const byte outPins[] = {L_DON_LED, L_KAT_LED, R_DON_LED, R_KAT_LED};
const char outKeys[] = {'f', 'd', 'j', 'k'}; // L don, L kat, R don, R kat const char outKeys[] = {L_DON_KEY, L_KAT_KEY, R_DON_KEY, R_KAT_KEY};
float sensitivities[] = {L_DON_SENS, L_KAT_SENS, R_DON_SENS, R_KAT_SENS};
float sensitivity[] = {1.0, 1.0, 1.0, 1.0};
short maxIndex; short maxIndex;
float maxPower; float maxPower;
@ -37,13 +66,11 @@ void setup() {
lastPower[i] = 0; lastPower[i] = 0;
triggered = false; triggered = false;
} }
lastTime = 0;
maxIndex = -1; maxIndex = -1;
maxPower = 0; maxPower = 0;
} }
void loop() { void loop() {
if (maxIndex != -1 && lastPower[maxIndex] < RESET_THRES) { if (maxIndex != -1 && lastPower[maxIndex] < RESET_THRES) {
triggered = false; triggered = false;
digitalWrite(outPins[maxIndex], LOW); digitalWrite(outPins[maxIndex], LOW);
@ -52,9 +79,9 @@ void loop() {
} }
for (byte i = 0; i < CHANNELS; i++) { for (byte i = 0; i < CHANNELS; i++) {
inputWindow[i].put(analogRead(inPins[i])); inputWindow[i].put(analogRead(inPins[i]));
power[i] = sensitivity[i] * (power[i] - inputWindow[i].get(1) + inputWindow[i].get()); power[i] = sensitivities[i] *
(power[i] - inputWindow[i].get(1) + inputWindow[i].get());
if (lastPower[i] > maxPower && power[i] < lastPower[i]) { if (lastPower[i] > maxPower && power[i] < lastPower[i]) {
maxPower = lastPower[i]; maxPower = lastPower[i];

View File

@ -1,9 +1,43 @@
#define CHANNELS 4 #define CHANNELS 4
#define SAMPLE_CACHE_LENGTH 16 // Must be power of 2 (8, 16, etc.); See cache.h for implementation
#define HIT_THRES 750 // The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
#define RESET_THRES 100 // changed SAMPLE_CACHE_LENGTH, you must also adjust thresholds
#define SAMPLING_PERIOD 500 // Sampling period in microseconds, 500us = 0.5ms = 2000Hz
// SAMPLE_CACHE_LENGTH must be power of 2 (8, 16, 32, etc.)
// See cache.h for implementation
#define SAMPLE_CACHE_LENGTH 32
// The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
// changed SAMPLE_CACHE_LENGTH, you should also adjust thresholds
#define HIT_THRES 1750
#define RESET_THRES 200
// Sampling period in μs, e.g., 500μs = 0.5ms = 2000Hz
#define SAMPLING_PERIOD 500
// Sensitivity multipliers for each channel, 1.0 as the baseline
#define L_DON_SENS 1.0
#define L_KAT_SENS 1.0
#define R_DON_SENS 1.0
#define R_KAT_SENS 1.0
// Input pins for each channel
#define L_DON_IN 4
#define L_KAT_IN 5
#define R_DON_IN 6
#define R_KAT_IN 7
// Output LED pins for each channel (just for visualization)
#define L_DON_LED 9
#define L_KAT_LED 10
#define R_DON_LED 11
#define R_KAT_LED 12
// Keyboard output for each channel
#define L_DON_KEY 'f'
#define L_KAT_KEY 'd'
#define R_DON_KEY 'j'
#define R_KAT_KEY 'k'
// Enable debug mode to view analog input values from the Serial
// Enabling this also disables the keyboard simulation
#define DEBUG 0 #define DEBUG 0
#include "USB.h" #include "USB.h"
@ -19,11 +53,10 @@ unsigned long lastPower[CHANNELS];
bool triggered; bool triggered;
unsigned long triggeredTime[CHANNELS]; unsigned long triggeredTime[CHANNELS];
const byte inPins[] = {36, 39, 34, 35}; // L don, L kat, R don, R kat const byte inPins[] = {L_DON_IN, L_KAT_IN, R_DON_IN, R_KAT_IN};
const byte outPins[] = {25, 26, 27, 14}; // LED visualization (optional) const byte outPins[] = {L_DON_LED, L_KAT_LED, R_DON_LED, R_KAT_LED};
const char outKeys[] = {'f', 'd', 'j', 'k'}; // L don, L kat, R don, R kat const char outKeys[] = {L_DON_KEY, L_KAT_KEY, R_DON_KEY, R_KAT_KEY};
float sensitivities[] = {L_DON_SENS, L_KAT_SENS, R_DON_SENS, R_KAT_SENS};
float sensitivity[] = {1.0, 1.0, 1.0, 1.0};
short maxIndex; short maxIndex;
float maxPower; float maxPower;
@ -42,8 +75,10 @@ void setup() {
maxIndex = -1; maxIndex = -1;
maxPower = 0; maxPower = 0;
lastTime = micros(); lastTime = micros();
#if !DEBUG
Keyboard.begin(); Keyboard.begin();
USB.begin(); USB.begin();
#endif
} }
void loop() { void loop() {
@ -56,7 +91,7 @@ void loop() {
for (byte i = 0; i < CHANNELS; i++) { for (byte i = 0; i < CHANNELS; i++) {
inputWindow[i].put(analogRead(inPins[i])); inputWindow[i].put(analogRead(inPins[i]));
power[i] = sensitivity[i] * power[i] = sensitivities[i] *
(power[i] - inputWindow[i].get(1) + inputWindow[i].get()); (power[i] - inputWindow[i].get(1) + inputWindow[i].get());
if (lastPower[i] > maxPower && power[i] < lastPower[i]) { if (lastPower[i] > maxPower && power[i] < lastPower[i]) {

View File

@ -1,9 +1,43 @@
#define CHANNELS 4 #define CHANNELS 4
#define SAMPLE_CACHE_LENGTH 16 // Must be power of 2 (8, 16, etc.); See cache.h for implementation
#define HIT_THRES 750 // The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
#define RESET_THRES 100 // changed SAMPLE_CACHE_LENGTH, you must also adjust thresholds
#define SAMPLING_PERIOD 500 // Sampling period in microseconds, 500us = 0.5ms = 2000Hz
// SAMPLE_CACHE_LENGTH must be power of 2 (8, 16, 32, etc.)
// See cache.h for implementation
#define SAMPLE_CACHE_LENGTH 16
// The thresholds are also dependent on SAMPLE_CACHE_LENGTH, if you
// changed SAMPLE_CACHE_LENGTH, you should also adjust thresholds
#define HIT_THRES 750
#define RESET_THRES 200
// Sampling period in μs, e.g., 500μs = 0.5ms = 2000Hz
#define SAMPLING_PERIOD 500
// Sensitivity multipliers for each channel, 1.0 as the baseline
#define L_DON_SENS 1.0
#define L_KAT_SENS 1.0
#define R_DON_SENS 1.0
#define R_KAT_SENS 1.0
// Input pins for each channel
#define L_DON_IN 36
#define L_KAT_IN 39
#define R_DON_IN 34
#define R_KAT_IN 35
// Output LED pins for each channel (just for visualization)
#define L_DON_LED 25
#define L_KAT_LED 26
#define R_DON_LED 27
#define R_KAT_LED 14
// Keyboard output for each channel
#define L_DON_KEY 'f'
#define L_KAT_KEY 'd'
#define R_DON_KEY 'j'
#define R_KAT_KEY 'k'
// Enable debug mode to view analog input values from the Serial
// Enabling this also disables the keyboard simulation
#define DEBUG 0 #define DEBUG 0
#include "cache.h" #include "cache.h"
@ -16,11 +50,10 @@ unsigned long lastPower[CHANNELS];
bool triggered; bool triggered;
unsigned long triggeredTime[CHANNELS]; unsigned long triggeredTime[CHANNELS];
const byte inPins[] = {36, 39, 34, 35}; // L don, L kat, R don, R kat const byte inPins[] = {L_DON_IN, L_KAT_IN, R_DON_IN, R_KAT_IN};
const byte outPins[] = {25, 26, 27, 14}; // LED visualization (optional) const byte outPins[] = {L_DON_LED, L_KAT_LED, R_DON_LED, R_KAT_LED};
const char outKeys[] = {'f', 'd', 'j', 'k'}; // L don, L kat, R don, R kat const char outKeys[] = {L_DON_KEY, L_KAT_KEY, R_DON_KEY, R_KAT_KEY};
float sensitivities[] = {L_DON_SENS, L_KAT_SENS, R_DON_SENS, R_KAT_SENS};
float sensitivity[] = {1.0, 1.0, 1.0, 1.0};
short maxIndex; short maxIndex;
float maxPower; float maxPower;
@ -43,7 +76,6 @@ void setup() {
} }
void loop() { void loop() {
if (maxIndex != -1 && lastPower[maxIndex] < RESET_THRES) { if (maxIndex != -1 && lastPower[maxIndex] < RESET_THRES) {
triggered = false; triggered = false;
digitalWrite(outPins[maxIndex], LOW); digitalWrite(outPins[maxIndex], LOW);
@ -52,9 +84,9 @@ void loop() {
} }
for (byte i = 0; i < CHANNELS; i++) { for (byte i = 0; i < CHANNELS; i++) {
inputWindow[i].put(analogRead(inPins[i])); inputWindow[i].put(analogRead(inPins[i]));
power[i] = sensitivity[i] * (power[i] - inputWindow[i].get(1) + inputWindow[i].get()); power[i] = sensitivities[i] *
(power[i] - inputWindow[i].get(1) + inputWindow[i].get());
if (lastPower[i] > maxPower && power[i] < lastPower[i]) { if (lastPower[i] > maxPower && power[i] < lastPower[i]) {
maxPower = lastPower[i]; maxPower = lastPower[i];