/*************************************************************** * * * Taiko Sanro - Arduino * * Support Arduino models with ATmega32u4 microprocessors * * * * Copyright © 2016 Shiky Chang * * zhangxunpx@gmail.com * * * ***************************************************************/ #define MODE_JIRO 1 #define CHANNELS 4 // Input delay ~ (SAMPLE_CACHE_LENGTH + POWER_CACHE_LENGTH) / sample frequency // _CACHE_LENGTH must be less than 256 #define SAMPLE_CACHE_LENGTH 150 #define POWER_CACHE_LENGTH 3 // _THRES must be less than 2^32 = 4294967296 = 4.29e9 #define LIGHT_THRES 2500000 #define HEAVY_THRES 5000000 #include int channelSample [CHANNELS]; int lastChannelSample [CHANNELS]; int sampleCache [CHANNELS][SAMPLE_CACHE_LENGTH]; short int sampleCacheIndex [CHANNELS]; long int power [CHANNELS]; long int powerCache [CHANNELS][POWER_CACHE_LENGTH]; short int powerCacheIndex [CHANNELS]; bool triggered [CHANNELS]; void setup() { Serial.begin (9600); Keyboard.begin (); analogReference (DEFAULT); for (short int i = 0; i < CHANNELS; i++) { for (short int j = 0; j < SAMPLE_CACHE_LENGTH; j++) { sampleCache [i][j] = 0; } sampleCacheIndex [i] = SAMPLE_CACHE_LENGTH - 1; for (short int j = 0; j < POWER_CACHE_LENGTH; j++) { powerCache [i][j] = 0; } powerCacheIndex [i] = POWER_CACHE_LENGTH - 1; power [i] = 0; lastChannelSample [i] = 0; triggered [i] = false; } } void loop() { // Analog input: 0~5V -> 0~1023 channelSample[0] = analogRead (A0); // L don channelSample[1] = analogRead (A1); // R don channelSample[2] = analogRead (A2); // L kat channelSample[3] = analogRead (A3); // R kat for (short int i = 0; i < CHANNELS; i++) { sampleCacheIndex [i] = (sampleCacheIndex [i] + 1) % SAMPLE_CACHE_LENGTH; sampleCache [i][sampleCacheIndex [i]] = channelSample [i] - lastChannelSample [i]; long int tempInt; tempInt = sampleCache [i][(sampleCacheIndex [i] + 1) % SAMPLE_CACHE_LENGTH]; power [i] -= tempInt * tempInt; tempInt = sampleCache [i][sampleCacheIndex [i]]; power [i] += tempInt * tempInt; if (power [i] < LIGHT_THRES) { power [i] = 0; } powerCacheIndex [i] = (powerCacheIndex [i] + 1 ) % POWER_CACHE_LENGTH; powerCache [i][powerCacheIndex [i]] = power [i]; lastChannelSample [i] = channelSample [i]; for (short int j = 0; j < POWER_CACHE_LENGTH - 1; j++){ if (!triggered) { if (powerCache [i][(powerCacheIndex [i] + j + 1) % POWER_CACHE_LENGTH] > powerCache [i][(powerCacheIndex [i] + j) % POWER_CACHE_LENGTH] || j != POWER_CACHE_LENGTH - 2) { break; } else { #if MODE_JIRO if (power [i] >= LIGHT_THRES) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('g'); break; case 1: Keyboard.print ('h'); break; case 2: Keyboard.print ('f'); break; case 3: Keyboard.print ('j'); break; } } #else if (power [i] >= HEAVY_THRES) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('t'); break; case 1: Keyboard.print ('y'); break; case 2: Keyboard.print ('r'); break; case 3: Keyboard.print ('u'); break; } } else if (power [i] >= LIGHT_THRES) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('g'); break; case 1: Keyboard.print ('h'); break; case 2: Keyboard.print ('f'); break; case 3: Keyboard.print ('j'); break; } } #endif } } } // This is the end of each channel } delay (1); }