/*************************************************************** * * * Taiko Sanro - Arduino * * Support Arduino models with ATmega32u4 microprocessors * * * * Copyright © 2016 Shiky Chang * * zhangxunpx@gmail.com * * * ***************************************************************/ #define MODE_JIRO 0 #define CHANNELS 4 // Input delay (in seconds) = (SAMPLE_CACHE_LENGTH + POWER_CACHE_LENGTH) / sample frequency // _CACHE_LENGTH must be less than 256 #define SAMPLE_CACHE_LENGTH 150 #define POWER_CACHE_LENGTH 5 // _THRES must be less than 2^32 = 4294967296 = 4.29e9 #define LIGHT_THRES 3000000 #define HEAVY_THRES 10000000 #include int channelSample [CHANNELS]; int sampleCache [CHANNELS][SAMPLE_CACHE_LENGTH]; short int sampleCacheIndex [CHANNELS]; long int power [CHANNELS]; long int powerCache [CHANNELS][POWER_CACHE_LENGTH]; short int powerCacheIndex [CHANNELS]; bool triggered [CHANNELS]; void setup() { Serial.begin (9600); Keyboard.begin (); for (short int i = 0; i < CHANNELS; i++) { for (short int j = 0; j < SAMPLE_CACHE_LENGTH; j++) { sampleCache [i][j] = 0; } sampleCacheIndex [i] = SAMPLE_CACHE_LENGTH - 1; for (short int j = 0; j < POWER_CACHE_LENGTH; j++) { powerCache [i][j] = 0; } powerCacheIndex [i] = POWER_CACHE_LENGTH - 1; power [i] = 0; triggered [i] = false; } } void loop() { // Analog input: 0~5V -> 0~1023 channelSample[0] = analogRead (A0); // L don channelSample[1] = analogRead (A1); // R don channelSample[2] = analogRead (A2); // L kat channelSample[3] = analogRead (A3); // R kat // Cache // Start status: [ 0 ] [ 1 ] [ 2 ] ... [n-3] [n-2] [n-1] // | | // Oldest Pointer // // New status: [NEW] [ 1 ] [ 2 ] ... [n-3] [n-2] [n-1] // (Loop 1) | | // Pointer | // Oldest for (short int i = 0; i < CHANNELS; i++) { sampleCacheIndex [i] ++; sampleCacheIndex [i] %= SAMPLE_CACHE_LENGTH; sampleCache [i][sampleCacheIndex [i]] = channelSample [i]; power [i] += channelSample [i] * channelSample [i]; int oldest = sampleCache [i][(sampleCacheIndex [i] + 1) % SAMPLE_CACHE_LENGTH]; power [i] -= oldest * oldest; if (power [i] < LIGHT_THRES) { power [i] = 0; triggered [i] = false; } powerCacheIndex [i] ++; powerCacheIndex [i] %= POWER_CACHE_LENGTH; powerCache [i][powerCacheIndex [i]] = power [i]; // In the power cache, if we see any drop, we regard this point as a maximum for (short int j = 0; j < POWER_CACHE_LENGTH; j++){ if (powerCache [i][(powerCacheIndex [i] + j) % POWER_CACHE_LENGTH] < powerCache [i][(powerCacheIndex [i] + j - 1) % POWER_CACHE_LENGTH]) { #if MODE_JIRO if (power [i] >= LIGHT_THRES && triggered [i] == false) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('g'); break; case 1: Keyboard.print ('h'); break; case 2: Keyboard.print ('f'); break; case 3: Keyboard.print ('j'); break; } } #else if (power [i] >= HEAVY_THRES && triggered [i] == false) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('t'); break; case 1: Keyboard.print ('y'); break; case 2: Keyboard.print ('r'); break; case 3: Keyboard.print ('u'); break; } } else if (power [i] >= LIGHT_THRES && triggered [i] == false) { triggered [i] = true; switch (i) { case 0: Keyboard.print ('g'); break; case 1: Keyboard.print ('h'); break; case 2: Keyboard.print ('f'); break; case 3: Keyboard.print ('j'); break; } } #endif break; } else if (j == POWER_CACHE_LENGTH - 1) { // The power is still increasing } } // This is the end of each channel } delay (1); }