Taiko-Nijiiro-Analog-IOBoard/ESP32-S3-Analog/ESP32-S3-Analog.ino
2024-01-23 17:03:20 -08:00

182 lines
5.8 KiB
C++

// Enable this mode to pass raw analog data to the game without any post-
// processing.
// The game has a built-in mechanism to calculate which sensor is triggered
// and the force of the hit, so it's recommended to enable this mode.
// This also the provides the most similar experience with the arcade.
// If turned on, the microcontroller will ony do a fast sigle-pass convolution
// over the piezoelectric sensors' inputs, and then pass the data to the game
// directly.
#define RAW_ANALOG_MODE 1
#define PLAYERS 2
#define CHANNELS 4
// SAMPLE_CACHE_LENGTH must be power of 2 (8, 16, 32, etc.)
// See cache.h for implementation
#define SAMPLE_CACHE_LENGTH 16
// The maximum value of a hit (not the minumum value to trigger a heavy hit)
// To configure the light and heavy thresholds, do it in the game settings
#define MAX_THRES 5000
#if !RAW_ANALOG_MODE
// The minimum value to trigger a light hit
#define HIT_THRES 1000
// If the reset time is too short, the game may not be able to
// receive the input. From testing I found 40 seems to be the
// minimum value so that the game won't miss any hit. If the game
// occassionally miss the drum input, increase this value
#define RESET_TIME 40
#endif
// Sensitivity multipliers for each channel, 1.0 as the baseline
#define P1_L_DON_SENS 1.0
#define P1_L_KAT_SENS 1.0
#define P1_R_DON_SENS 1.0
#define P1_R_KAT_SENS 1.0
#define P2_L_DON_SENS 1.0
#define P2_L_KAT_SENS 1.0
#define P2_R_DON_SENS 1.0
#define P2_R_KAT_SENS 1.0
// Input pins for each channel
#define P1_L_DON_IN 4
#define P1_L_KAT_IN 5
#define P1_R_DON_IN 6
#define P1_R_KAT_IN 7
#define P2_L_DON_IN 8
#define P2_L_KAT_IN 3
#define P2_R_DON_IN 9
#define P2_R_KAT_IN 10
// Output LED pins for each channel (just for visualization)
#define P1_L_DON_LED 11
#define P1_L_KAT_LED 12
#define P1_R_DON_LED 13
#define P1_R_KAT_LED 14
#define P2_L_DON_LED 42
#define P2_L_KAT_LED 41
#define P2_R_DON_LED 40
#define P2_R_KAT_LED 39
#define AXIS_RANGE 1023
#include "USB.h"
#include "Joystick_ESP32S2.h"
#include "cache.h"
const byte inPins[PLAYERS][CHANNELS] = {
P1_L_DON_IN, P1_L_KAT_IN, P1_R_DON_IN, P1_R_KAT_IN,
P2_L_DON_IN, P2_L_KAT_IN, P2_R_DON_IN, P2_R_KAT_IN
};
const byte outPins[PLAYERS][CHANNELS] = {
P1_L_DON_LED, P1_L_KAT_LED, P1_R_DON_LED, P1_R_KAT_LED,
P2_L_DON_LED, P2_L_KAT_LED, P2_R_DON_LED, P2_R_KAT_LED
};
const float sensitivities[PLAYERS][CHANNELS] = {
P1_L_DON_SENS, P1_L_KAT_SENS, P1_R_DON_SENS, P1_R_KAT_SENS,
P2_L_DON_SENS, P2_L_KAT_SENS, P2_R_DON_SENS, P2_R_KAT_SENS
};
Cache<int, SAMPLE_CACHE_LENGTH> inputWindow[PLAYERS][CHANNELS];
unsigned long power[PLAYERS][CHANNELS];
#if !RAW_ANALOG_MODE
unsigned long lastPower[PLAYERS][CHANNELS];
bool triggered[PLAYERS];
unsigned long triggeredTime[PLAYERS][CHANNELS];
int outputValue[PLAYERS] = {0, 0};
uint resetTimer[PLAYERS] = {0, 0};
short maxIndex[PLAYERS] = {0, 0};
float maxPower[PLAYERS] = {0, 0};
#endif
uint axisValues[PLAYERS][CHANNELS] = {0, 0, 0, 0, 0, 0, 0, 0};
Joystick_ Joystick(JOYSTICK_DEFAULT_REPORT_ID, JOYSTICK_TYPE_GAMEPAD, 10, 4,
true, true, false, true, true, false,
false, false, false, false, false);
void setup() {
for (byte p = 0; p < PLAYERS; p++) {
for (byte i = 0; i < CHANNELS; i++) {
power[p][i] = 0;
#if !RAW_ANALOG_MODE
lastPower[p][i] = 0;
triggered[p] = false;
#endif
pinMode(inPins[p][i], INPUT);
pinMode(outPins[p][i], OUTPUT);
}
#if !RAW_ANALOG_MODE
maxIndex[p] = -1;
maxPower[p] = 0;
#endif
}
USB.PID(0x4869);
USB.VID(0x4869);
USB.productName("Taiko Controller");
USB.manufacturerName("GitHub Community");
USB.begin();
Joystick.begin(false);
Joystick.setXAxisRange(-AXIS_RANGE, AXIS_RANGE);
Joystick.setYAxisRange(-AXIS_RANGE, AXIS_RANGE);
Joystick.setRxAxisRange(-AXIS_RANGE, AXIS_RANGE);
Joystick.setRyAxisRange(-AXIS_RANGE, AXIS_RANGE);
}
void loop() {
for (byte p = 0; p < PLAYERS; p++) {
for (byte i = 0; i < CHANNELS; i++) {
inputWindow[p][i].put(analogRead(inPins[p][i]));
power[p][i] = sensitivities[p][i] * (power[p][i] - inputWindow[p][i].get(1) + inputWindow[p][i].get());
#if !RAW_ANALOG_MODE
if (lastPower[p][i] > maxPower[p] && power[p][i] < lastPower[p][i]) {
maxPower[p] = lastPower[p][i];
maxIndex[p] = i;
}
lastPower[p][i] = power[p][i];
#else
axisValues[p][i] = AXIS_RANGE * (power[p][i] > MAX_THRES ? 1 : ((float)power[p][i] / MAX_THRES));
#endif
}
#if !RAW_ANALOG_MODE
if (!triggered[p] && maxPower[p] >= HIT_THRES) {
triggered[p] = true;
digitalWrite(outPins[p][maxIndex[p]], HIGH);
outputValue[p] = (int)(AXIS_RANGE * (maxPower[p] >= MAX_THRES ? 1 : maxPower[p] / MAX_THRES));
}
if (triggered[p] && resetTimer[p] >= RESET_TIME) {
triggered[p] = false;
resetTimer[p] = 0;
digitalWrite(outPins[p][maxIndex[p]], LOW);
maxPower[p] = 0;
maxIndex[p] = -1;
outputValue[p] = 0;
}
for (byte i = 0; i < CHANNELS; i++) {
if (triggered[p] && i == maxIndex[p]) {
axisValues[p][i] = outputValue[p];
} else {
axisValues[p][i] = 0;
}
}
if (triggered[p]) {
resetTimer[p]++;
}
#endif
}
Joystick.setXAxis(axisValues[0][0] > axisValues[0][1] ? axisValues[0][0] : -axisValues[0][1]);
Joystick.setYAxis(axisValues[0][2] > axisValues[0][3] ? axisValues[0][2] : -axisValues[0][3]);
Joystick.setRxAxis(axisValues[1][0] > axisValues[1][1] ? axisValues[1][0] : -axisValues[1][1]);
Joystick.setRyAxis(axisValues[1][2] > axisValues[1][3] ? axisValues[1][2] : -axisValues[1][3]);
Joystick.sendState();
}