mirror of
https://github.com/whowechina/geki_pico.git
synced 2025-02-12 08:43:04 +01:00
775 lines
26 KiB
C
775 lines
26 KiB
C
/*
|
|
* VL53L0X Distance measurement sensor
|
|
* WHowe <github.com/whowechina>
|
|
*
|
|
* Most of this VL53L0X code is from https://github.com/pololu/vl53l0x-arduino
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "hardware/i2c.h"
|
|
#include "board_defs.h"
|
|
|
|
#include "vl53l0x.h"
|
|
|
|
#define VL53L0X_DEF_ADDR 0x29
|
|
|
|
#define IO_TIMEOUT_US 1000
|
|
#define TOF_WAIT_US 200000
|
|
|
|
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
|
|
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
|
|
|
|
// Encode VCSEL pulse period register value from period in PCLKs
|
|
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
|
|
|
|
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
|
|
// PLL_period_ps = 1655; macro_period_vclks = 2304
|
|
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
|
|
|
|
static struct {
|
|
i2c_inst_t *port;
|
|
uint8_t addr;
|
|
uint8_t stop_variable; // read by init and used when starting measurement
|
|
uint16_t range;
|
|
uint32_t timing_budget_us;
|
|
} instances[16] = { { i2c0, VL53L0X_DEF_ADDR } };
|
|
|
|
static int current_instance = 0;
|
|
|
|
#define INSTANCE_NUM (sizeof(instances) / sizeof(instances[0]))
|
|
#define I2C_PORT instances[current_instance].port
|
|
#define I2C_ADDR instances[current_instance].addr
|
|
|
|
// Write an 8-bit register
|
|
void write_reg(uint8_t reg, uint8_t value)
|
|
{
|
|
uint8_t data[2] = { reg, value };
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, data, 2, false, time_us_64() + IO_TIMEOUT_US);
|
|
}
|
|
|
|
// Write a 16-bit register
|
|
void write_reg16(uint8_t reg, uint16_t value)
|
|
{
|
|
uint8_t data[3] = { reg, value >> 8, value & 0xff };
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, data, 3, false, time_us_64() + IO_TIMEOUT_US);
|
|
}
|
|
|
|
static void write_reg_list(const uint16_t *list)
|
|
{
|
|
const uint16_t *regs = list + 1;
|
|
for (int i = 0; i < *list; i++) {
|
|
write_reg(regs[i] >> 8, regs[i] & 0xff);
|
|
}
|
|
}
|
|
|
|
// Read an 8-bit register
|
|
uint8_t read_reg(uint8_t reg)
|
|
{
|
|
uint8_t value;
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, ®, 1, true, time_us_64() + IO_TIMEOUT_US);
|
|
i2c_read_blocking_until(I2C_PORT, I2C_ADDR, &value, 1, false, time_us_64() + IO_TIMEOUT_US);
|
|
return value;
|
|
}
|
|
|
|
// Read a 16-bit register
|
|
uint16_t read_reg16(uint8_t reg)
|
|
{
|
|
uint8_t value[2];
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, ®, 1, true, time_us_64() + IO_TIMEOUT_US);
|
|
i2c_read_blocking_until(I2C_PORT, I2C_ADDR, value, 2, false, time_us_64() + IO_TIMEOUT_US);
|
|
return (value[0] << 8) | value[1];
|
|
}
|
|
|
|
// Write an arbitrary number of bytes from the given array to the sensor,
|
|
// starting at the given register
|
|
void write_many(uint8_t reg, const uint8_t *src, uint8_t len)
|
|
{
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, ®, 1, true, time_us_64() + IO_TIMEOUT_US);
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, src, len, false, time_us_64() + IO_TIMEOUT_US);
|
|
}
|
|
|
|
// Read an arbitrary number of bytes from the sensor, starting at the given
|
|
// register, into the given array
|
|
void read_many(uint8_t reg, uint8_t *dst, uint8_t len)
|
|
{
|
|
i2c_write_blocking_until(I2C_PORT, I2C_ADDR, ®, 1, true, time_us_64() + IO_TIMEOUT_US);
|
|
i2c_read_blocking_until(I2C_PORT, I2C_ADDR, dst, len, false, time_us_64() + IO_TIMEOUT_US * len);
|
|
}
|
|
|
|
|
|
const uint16_t reg_mode1[] = { 4, 0x8800, 0x8001, 0xff01, 0x0000 };
|
|
const uint16_t reg_mode2[] = { 3, 0x0001, 0xff00, 0x8000 };
|
|
const uint16_t reg_spad0[] = { 4, 0x8001, 0xff01, 0x0000, 0xff06 };
|
|
const uint16_t reg_spad1[] = { 5, 0xff07, 0x8101, 0x8001, 0x946b, 0x8300 };
|
|
const uint16_t reg_spad2[] = { 4, 0xff01, 0x0001, 0xff00, 0x8000 };
|
|
const uint16_t reg_spad[] = { 5, 0xff01, 0x4f00, 0x4e2c, 0xff00, 0xb6b4 };
|
|
const uint16_t reg_tuning[] = { 80,
|
|
0xff01, 0x0000, 0xff00, 0x0900, 0x1000, 0x1100, 0x2401, 0x25ff,
|
|
0x7500, 0xff01, 0x4e2c, 0x4800, 0x3020, 0xff00, 0x3009, 0x5400,
|
|
0x3104, 0x3203, 0x4083, 0x4625, 0x6000, 0x2700, 0x5006, 0x5100,
|
|
0x5296, 0x5608, 0x5730, 0x6100, 0x6200, 0x6400, 0x6500, 0x66a0,
|
|
0xff01, 0x2232, 0x4714, 0x49ff, 0x4a00, 0xff00, 0x7a0a, 0x7b00,
|
|
0x7821, 0xff01, 0x2334, 0x4200, 0x44ff, 0x4526, 0x4605, 0x4040,
|
|
0x0e06, 0x201a, 0x4340, 0xff00, 0x3403, 0x3544, 0xff01, 0x3104,
|
|
0x4b09, 0x4c05, 0x4d04, 0xff00, 0x4400, 0x4520, 0x4708, 0x4828,
|
|
0x6700, 0x7004, 0x7101, 0x72fe, 0x7600, 0x7700, 0xff01, 0x0d01,
|
|
0xff00, 0x8001, 0x01f8, 0xff01, 0x8e01, 0x0001, 0xff00, 0x8000,
|
|
};
|
|
|
|
void vl53l0x_init(unsigned index, i2c_inst_t *i2c_port, uint8_t i2c_addr)
|
|
{
|
|
if (index < INSTANCE_NUM) {
|
|
instances[index].port = i2c_port;
|
|
instances[index].addr = i2c_addr ? i2c_addr : VL53L0X_DEF_ADDR;
|
|
}
|
|
}
|
|
|
|
void vl53l0x_use(unsigned index)
|
|
{
|
|
if (index < INSTANCE_NUM) {
|
|
current_instance = index;
|
|
}
|
|
}
|
|
|
|
bool vl53l0x_is_present()
|
|
{
|
|
return read_reg(IDENTIFICATION_MODEL_ID) == 0xEE;
|
|
}
|
|
|
|
bool vl53l0x_init_tof()
|
|
{
|
|
write_reg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
|
|
read_reg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01);
|
|
|
|
write_reg_list(reg_mode1);
|
|
instances[current_instance].stop_variable = read_reg(0x91);
|
|
write_reg_list(reg_mode2);
|
|
|
|
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
|
|
write_reg(MSRC_CONFIG_CONTROL, read_reg(MSRC_CONFIG_CONTROL) | 0x12);
|
|
|
|
// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
|
|
write_reg16(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, 32);
|
|
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0xFF);
|
|
|
|
uint8_t spad_count;
|
|
bool is_aperture;
|
|
if (!getSpadInfo(&spad_count, &is_aperture)) {
|
|
printf("%d\n", __LINE__);
|
|
return false;
|
|
}
|
|
|
|
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
|
|
// the API, but the same data seems to be more easily readable from
|
|
// GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
|
|
uint8_t ref_spad_map[6];
|
|
read_many(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
write_reg_list(reg_spad);
|
|
|
|
uint8_t first_spad = is_aperture ? 12 : 0; // 12 is the first aperture spad
|
|
uint8_t spads_enabled = 0;
|
|
|
|
for (int i = 0; i < 48; i++) {
|
|
if (i < first_spad || spads_enabled == spad_count) {
|
|
// This bit is lower than the first one that should be enabled, or
|
|
// (reference_spad_count) bits have already been enabled, so zero this bit
|
|
ref_spad_map[i / 8] &= ~(1 << (i % 8));
|
|
} else if (ref_spad_map[i / 8] & (1 << i % 8)) {
|
|
spads_enabled++;
|
|
}
|
|
}
|
|
|
|
write_many(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
|
|
write_reg_list(reg_tuning);
|
|
|
|
write_reg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
|
|
write_reg(GPIO_HV_MUX_ACTIVE_HIGH, read_reg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
|
|
write_reg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
instances[current_instance].timing_budget_us = getMeasurementTimingBudget();
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
setMeasurementTimingBudget(instances[current_instance].timing_budget_us);
|
|
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0x01);
|
|
if (!performSingleRefCalibration(0x40)) {
|
|
printf("%d\n", __LINE__);
|
|
return false;
|
|
}
|
|
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
if (!performSingleRefCalibration(0x00)) {
|
|
printf("%d\n", __LINE__);
|
|
return false;
|
|
}
|
|
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the return signal rate limit check value in MCPS
|
|
float getSignalRateLimit()
|
|
{
|
|
return (float)read_reg16(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
|
|
}
|
|
|
|
// Decode sequence step timeout in MCLKs from register value
|
|
// based on VL53L0X_decode_timeout()
|
|
// Note: the original function returned a uint32_t, but the return value is
|
|
// always stored in a uint16_t.
|
|
uint16_t decodeTimeout(uint16_t reg_val)
|
|
{
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
return (uint16_t)((reg_val & 0x00FF) <<
|
|
(uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
|
|
}
|
|
|
|
// Encode sequence step timeout register value from timeout in MCLKs
|
|
// based on VL53L0X_encode_timeout()
|
|
static uint16_t encodeTimeout(uint16_t timeout_mclks)
|
|
{
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
uint32_t ls_byte = 0;
|
|
uint16_t ms_byte = 0;
|
|
|
|
if (timeout_mclks > 0) {
|
|
ls_byte = timeout_mclks - 1;
|
|
|
|
while ((ls_byte & 0xFFFFFF00) > 0) {
|
|
ls_byte >>= 1;
|
|
ms_byte++;
|
|
}
|
|
|
|
return (ms_byte << 8) | (ls_byte & 0xFF);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_us()
|
|
uint32_t timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
|
|
return ((timeout_period_mclks * macro_period_ns) + 500) / 1000;
|
|
}
|
|
|
|
// Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_mclks()
|
|
uint32_t timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
|
|
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
|
|
}
|
|
|
|
// Set the measurement timing budget in microseconds, which is the time allowed
|
|
// for one measurement; the ST API and this library take care of splitting the
|
|
// timing budget among the sub-steps in the ranging sequence. A longer timing
|
|
// budget allows for more accurate measurements. Increasing the budget by a
|
|
// factor of N decreases the range measurement standard deviation by a factor of
|
|
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
|
|
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
|
|
bool setMeasurementTimingBudget(uint32_t budget_us)
|
|
{
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1320; // different than the value in get_
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
uint32_t const MinTimingBudget = 20000;
|
|
|
|
if (budget_us < MinTimingBudget) {
|
|
return false;
|
|
}
|
|
|
|
uint32_t used_budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc) {
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss) {
|
|
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
} else if (enables.msrc) {
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range) {
|
|
used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range) {
|
|
used_budget_us += FinalRangeOverhead;
|
|
|
|
// "Note that the final range timeout is determined by the timing
|
|
// budget and the sum of all other timeouts within the sequence.
|
|
// If there is no room for the final range timeout, then an error
|
|
// will be set. Otherwise the remaining time will be applied to
|
|
// the final range."
|
|
|
|
if (used_budget_us > budget_us)
|
|
{
|
|
// "Requested timeout too big."
|
|
return false;
|
|
}
|
|
|
|
uint32_t final_range_timeout_us = budget_us - used_budget_us;
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint32_t final_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(final_range_timeout_us,
|
|
timeouts.final_range_vcsel_period_pclks);
|
|
|
|
if (enables.pre_range) {
|
|
final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
write_reg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
|
|
instances[current_instance].timing_budget_us = budget_us; // store for internal reuse
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Get the measurement timing budget in microseconds
|
|
// based on VL53L0X_get_measurement_timing_budget_micro_seconds()
|
|
// in us
|
|
uint32_t getMeasurementTimingBudget()
|
|
{
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1910;
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
// "Start and end overhead times always present"
|
|
uint32_t budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc) {
|
|
budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss) {
|
|
budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
} else if (enables.msrc) {
|
|
budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range) {
|
|
budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range) {
|
|
budget_us += (timeouts.final_range_us + FinalRangeOverhead);
|
|
}
|
|
|
|
instances[current_instance].timing_budget_us = budget_us; // cache for reuse
|
|
return budget_us;
|
|
}
|
|
|
|
// Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
|
|
// given period type (pre-range or final range) to the given value in PCLKs.
|
|
// Longer periods seem to increase the potential range of the sensor.
|
|
// Valid values are (even numbers only):
|
|
// pre: 12 to 18 (initialized default: 14)
|
|
// final: 8 to 14 (initialized default: 10)
|
|
// based on VL53L0X_set_vcsel_pulse_period()
|
|
bool setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)
|
|
{
|
|
uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
|
|
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
// "Apply specific settings for the requested clock period"
|
|
// "Re-calculate and apply timeouts, in macro periods"
|
|
|
|
// "When the VCSEL period for the pre or final range is changed,
|
|
// the corresponding timeout must be read from the device using
|
|
// the current VCSEL period, then the new VCSEL period can be
|
|
// applied. The timeout then must be written back to the device
|
|
// using the new VCSEL period.
|
|
//
|
|
// For the MSRC timeout, the same applies - this timeout being
|
|
// dependant on the pre-range vcsel period."
|
|
|
|
|
|
if (type == VcselPeriodPreRange) {
|
|
// "Set phase check limits"
|
|
switch (period_pclks) {
|
|
case 12:
|
|
write_reg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
|
|
break;
|
|
|
|
case 14:
|
|
write_reg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
|
|
break;
|
|
|
|
case 16:
|
|
write_reg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
|
|
break;
|
|
|
|
case 18:
|
|
write_reg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
write_reg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
|
|
// apply new VCSEL period
|
|
write_reg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
|
|
|
|
uint16_t new_pre_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
|
|
|
|
write_reg16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(new_pre_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
|
|
|
|
uint16_t new_msrc_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
|
|
|
|
write_reg(MSRC_CONFIG_TIMEOUT_MACROP,
|
|
(new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
|
|
|
|
// set_sequence_step_timeout() end
|
|
} else if (type == VcselPeriodFinalRange) {
|
|
switch (period_pclks) {
|
|
case 8:
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
write_reg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
|
|
write_reg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(ALGO_PHASECAL_LIM, 0x30);
|
|
write_reg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 10:
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
write_reg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
write_reg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(ALGO_PHASECAL_LIM, 0x20);
|
|
write_reg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 12:
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
write_reg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
write_reg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(ALGO_PHASECAL_LIM, 0x20);
|
|
write_reg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 14:
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
|
|
write_reg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
write_reg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
write_reg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(ALGO_PHASECAL_LIM, 0x20);
|
|
write_reg(0xFF, 0x00);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
|
|
// apply new VCSEL period
|
|
write_reg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint16_t new_final_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
|
|
|
|
if (enables.pre_range) {
|
|
new_final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
write_reg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(new_final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout end
|
|
}
|
|
else {
|
|
// invalid type
|
|
return false;
|
|
}
|
|
|
|
// "Finally, the timing budget must be re-applied"
|
|
|
|
setMeasurementTimingBudget(instances[current_instance].timing_budget_us);
|
|
|
|
// "Perform the phase calibration. This is needed after changing on vcsel period."
|
|
// VL53L0X_perform_phase_calibration() begin
|
|
|
|
uint8_t sequence_config = read_reg(SYSTEM_SEQUENCE_CONFIG);
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
performSingleRefCalibration(0x0);
|
|
write_reg(SYSTEM_SEQUENCE_CONFIG, sequence_config);
|
|
|
|
// VL53L0X_perform_phase_calibration() end
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the VCSEL pulse period in PCLKs for the given period type.
|
|
// based on VL53L0X_get_vcsel_pulse_period()
|
|
uint8_t getVcselPulsePeriod(vcselPeriodType type)
|
|
{
|
|
if (type == VcselPeriodPreRange)
|
|
{
|
|
return decodeVcselPeriod(read_reg(PRE_RANGE_CONFIG_VCSEL_PERIOD));
|
|
}
|
|
else if (type == VcselPeriodFinalRange)
|
|
{
|
|
return decodeVcselPeriod(read_reg(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
|
|
}
|
|
else { return 255; }
|
|
}
|
|
|
|
// Start continuous ranging measurements.
|
|
// based on VL53L0X_StartMeasurement()
|
|
void vl53l0x_start_continuous()
|
|
{
|
|
write_reg(0x80, 0x01);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(0x00, 0x00);
|
|
write_reg(0x91, instances[current_instance].stop_variable);
|
|
write_reg(0x00, 0x01);
|
|
write_reg(0xFF, 0x00);
|
|
write_reg(0x80, 0x00);
|
|
|
|
write_reg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
|
|
}
|
|
|
|
// Stop continuous measurements
|
|
// based on VL53L0X_StopMeasurement()
|
|
void vl53l0x_stop_continuous()
|
|
{
|
|
write_reg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
|
|
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(0x00, 0x00);
|
|
write_reg(0x91, 0x00);
|
|
write_reg(0x00, 0x01);
|
|
write_reg(0xFF, 0x00);
|
|
}
|
|
|
|
// Returns a range reading in millimeters when continuous mode is active
|
|
// (readRangeSingleMillimeters() also calls this function after starting a
|
|
// single-shot range measurement)
|
|
uint16_t readRangeContinuousMillimeters()
|
|
{
|
|
if ((read_reg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
|
|
return instances[current_instance].range; // use last result
|
|
}
|
|
|
|
// assumptions: Linearity Corrective Gain is 1000 (default);
|
|
// fractional ranging is not enabled
|
|
instances[current_instance].range = read_reg16(RESULT_RANGE_STATUS + 10);
|
|
|
|
write_reg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
return instances[current_instance].range;
|
|
}
|
|
|
|
#if 0
|
|
// Performs a single-shot range measurement and returns the reading in
|
|
// millimeters
|
|
// based on VL53L0X_PerformSingleRangingMeasurement()
|
|
uint16_t readRangeSingleMillimeters()
|
|
{
|
|
static uint16_t range = 65535;
|
|
static bool reading = false;
|
|
static uint64_t start_time = 0;
|
|
|
|
uint64_t now = time_us_64();
|
|
if (now - start_time > TOF_WAIT_US) {
|
|
reading = false;
|
|
}
|
|
|
|
if (reading) {
|
|
if ((read_reg(SYSRANGE_START) & 0x01) == 0) {
|
|
range = readRangeContinuousMillimeters(index);
|
|
reading = false;
|
|
}
|
|
} else {
|
|
write_reg(0x80, 0x01);
|
|
write_reg(0xFF, 0x01);
|
|
write_reg(0x00, 0x00);
|
|
write_reg(0x91, instances[index].stop_variable);
|
|
write_reg(0x00, 0x01);
|
|
write_reg(0xFF, 0x00);
|
|
write_reg(0x80, 0x00);
|
|
|
|
write_reg(SYSRANGE_START, 0x01);
|
|
start_time = now;
|
|
reading = true;
|
|
}
|
|
return range;
|
|
}
|
|
#endif
|
|
|
|
// Private Methods /////////////////////////////////////////////////////////////
|
|
|
|
// Get reference SPAD (single photon avalanche diode) count and type
|
|
// based on VL53L0X_get_info_from_device(),
|
|
// but only gets reference SPAD count and type
|
|
bool getSpadInfo(uint8_t *count, bool *type_is_aperture)
|
|
{
|
|
write_reg_list(reg_spad0);
|
|
write_reg(0x83, read_reg(0x83) | 0x04);
|
|
write_reg_list(reg_spad1);
|
|
|
|
uint64_t start = time_us_64();
|
|
while (read_reg(0x83) == 0x00) {
|
|
if (time_us_64() - start > TOF_WAIT_US) {
|
|
return false;
|
|
}
|
|
sleep_ms(1);
|
|
}
|
|
|
|
write_reg(0x83, 0x01);
|
|
|
|
uint8_t tmp = read_reg(0x92);
|
|
*count = tmp & 0x7f;
|
|
*type_is_aperture = (tmp & 0x80);
|
|
|
|
write_reg(0x81, 0x00);
|
|
write_reg(0xFF, 0x06);
|
|
|
|
write_reg(0x83, read_reg(0x83) & ~0x04);
|
|
|
|
write_reg_list(reg_spad2);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get sequence step enables
|
|
// based on VL53L0X_GetSequenceStepEnables()
|
|
void getSequenceStepEnables(SequenceStepEnables * enables)
|
|
{
|
|
uint8_t seq_cfg = read_reg(SYSTEM_SEQUENCE_CONFIG);
|
|
|
|
enables->tcc = (seq_cfg >> 4) & 0x1;
|
|
enables->dss = (seq_cfg >> 3) & 0x1;
|
|
enables->msrc = (seq_cfg >> 2) & 0x1;
|
|
enables->pre_range = (seq_cfg >> 6) & 0x1;
|
|
enables->final_range = (seq_cfg >> 7) & 0x1;
|
|
}
|
|
|
|
// Get sequence step timeouts
|
|
// based on get_sequence_step_timeout(),
|
|
// but gets all timeouts instead of just the requested one, and also stores
|
|
// intermediate values
|
|
void getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts)
|
|
{
|
|
timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
|
|
|
|
timeouts->msrc_dss_tcc_mclks = read_reg(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
|
|
timeouts->msrc_dss_tcc_us =
|
|
timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,
|
|
timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->pre_range_mclks =
|
|
decodeTimeout(read_reg16(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
timeouts->pre_range_us =
|
|
timeoutMclksToMicroseconds(timeouts->pre_range_mclks,
|
|
timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
|
|
|
|
timeouts->final_range_mclks =
|
|
decodeTimeout(read_reg16(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
|
|
if (enables->pre_range) {
|
|
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
|
|
}
|
|
|
|
timeouts->final_range_us =
|
|
timeoutMclksToMicroseconds(timeouts->final_range_mclks,
|
|
timeouts->final_range_vcsel_period_pclks);
|
|
}
|
|
|
|
// based on VL53L0X_perform_single_ref_calibration()
|
|
bool performSingleRefCalibration(uint8_t vhv_init_byte)
|
|
{
|
|
write_reg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP
|
|
|
|
uint64_t start = time_us_64();
|
|
while ((read_reg(RESULT_INTERRUPT_STATUS) & 0x07) == 0) {
|
|
if (time_us_64() - start > TOF_WAIT_US) {
|
|
return false;
|
|
}
|
|
sleep_ms(1);
|
|
}
|
|
|
|
write_reg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
write_reg(SYSRANGE_START, 0x00);
|
|
|
|
return true;
|
|
} |