288 lines
10 KiB
C++
Raw Normal View History

2020-02-04 01:24:16 +00:00
/*
* Copyright (c) Atmosphère-NX
2020-02-04 01:24:16 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
2020-02-22 23:05:14 -08:00
#include <vapours/common.hpp>
#include <vapours/assert.hpp>
2020-02-04 01:24:16 +00:00
namespace ams::util {
2020-04-06 03:15:24 -07:00
namespace impl {
template<size_t N>
constexpr inline size_t Log2 = Log2<N / 2> + 1;
template<>
constexpr inline size_t Log2<1> = 0;
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
constexpr inline T ReverseBits(T x, int sw_bits = 1, int swar_words = 1) {
/* Check pre-conditions. */
AMS_ASSERT(0 <= swar_words && swar_words < (BITSIZEOF(T) + 1));
AMS_ASSERT(BITSIZEOF(T) % swar_words == 0);
AMS_ASSERT(0 <= sw_bits && sw_bits < ((BITSIZEOF(T) / swar_words) + 1));
AMS_ASSERT((BITSIZEOF(T) / swar_words) % sw_bits == 0);
2020-02-04 01:24:16 +00:00
2022-04-03 10:51:46 -07:00
using U = typename std::make_unsigned<T>::type;
const int word_size = BITSIZEOF(T) / swar_words;
const int k = word_size - sw_bits;
2020-02-04 01:24:16 +00:00
2022-04-03 10:51:46 -07:00
U u = std::bit_cast<U, T>(x);
for (int i = 1; i < BITSIZEOF(T); i <<= 1) {
const U mask = static_cast<U>(static_cast<U>(-1) / ((static_cast<U>(1) << i) + 1));
2020-02-04 01:24:16 +00:00
2022-04-03 10:51:46 -07:00
if (k & i) {
u = static_cast<U>(((u & mask) << i) | ((u & static_cast<U>(~mask)) >> i));
2020-02-04 01:24:16 +00:00
}
2022-04-03 10:51:46 -07:00
}
2020-02-04 01:24:16 +00:00
2022-04-03 10:51:46 -07:00
return std::bit_cast<T, U>(u);
}
2020-02-04 01:24:16 +00:00
2022-04-03 10:51:46 -07:00
template<std::integral T>
constexpr ALWAYS_INLINE T ReverseBytes(T x, int sw_bytes = 1, int swar_words = 1) {
return ReverseBits(x, sw_bytes * BITSIZEOF(u8), swar_words);
}
2020-02-04 01:24:16 +00:00
template<typename T = u64, typename ...Args> requires std::integral<T>
constexpr ALWAYS_INLINE T CombineBits(Args... args) {
2020-02-04 01:24:16 +00:00
return (... | (T(1u) << args));
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T ResetLeastSignificantOneBit(T x) {
return x & (x - 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T SetLeastSignificantZeroBit(T x) {
return x | (x + 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T ResetTrailingOnes(T x) {
return x & (x + 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T SetTrailingZeros(T x) {
return x | (x - 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
constexpr ALWAYS_INLINE T LeastSignificantOneBit(T x) {
return x & ~(x - 1);
}
template<std::integral T>
constexpr ALWAYS_INLINE T LeastSignificantZeroBit(T x) {
return ~x & (x + 1);
}
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T MaskTrailingZeros(T x) {
return (~x) & (x - 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T MaskTrailingOnes(T x) {
2022-04-03 10:51:46 -07:00
return x & ~(x + 1);
2020-04-06 03:15:24 -07:00
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T MaskTrailingZerosAndLeastSignificantOneBit(T x) {
return x ^ (x - 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T MaskTrailingOnesAndLeastSignificantZeroBit(T x) {
return x ^ (x + 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE int PopCount(T x) {
using U = typename std::make_unsigned<T>::type;
U u = static_cast<U>(x);
if (std::is_constant_evaluated()) {
2020-04-06 03:15:24 -07:00
/* https://en.wikipedia.org/wiki/Hamming_weight */
constexpr U m1 = U(-1) / 0x03;
constexpr U m2 = U(-1) / 0x05;
constexpr U m4 = U(-1) / 0x11;
u = static_cast<U>(u - ((u >> 1) & m1));
u = static_cast<U>((u & m2) + ((u >> 2) & m2));
u = static_cast<U>((u + (u >> 4)) & m4);
for (size_t i = 0; i < impl::Log2<sizeof(T)>; ++i) {
const size_t shift = (0x1 << i) * BITSIZEOF(u8);
u += u >> shift;
}
return static_cast<int>(u & 0x7Fu);
} else {
if constexpr (std::is_same<U, unsigned long long>::value) {
return __builtin_popcountll(u);
} else if constexpr (std::is_same<U, unsigned long>::value) {
return __builtin_popcountl(u);
} else {
static_assert(sizeof(U) <= sizeof(unsigned int));
return __builtin_popcount(static_cast<unsigned int>(u));
}
}
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE int CountLeadingZeros(T x) {
if (std::is_constant_evaluated()) {
2020-04-06 03:15:24 -07:00
for (size_t i = 0; i < impl::Log2<BITSIZEOF(T)>; ++i) {
const size_t shift = (0x1 << i);
x |= x >> shift;
}
return PopCount(static_cast<T>(~x));
} else {
using U = typename std::make_unsigned<T>::type;
2022-04-03 10:51:46 -07:00
if (const U u = static_cast<U>(x); u != 0) {
if constexpr (std::is_same<U, unsigned long long>::value) {
return __builtin_clzll(u);
} else if constexpr (std::is_same<U, unsigned long>::value) {
return __builtin_clzl(u);
} else if constexpr(std::is_same<U, unsigned int>::value) {
return __builtin_clz(u);
} else {
static_assert(sizeof(U) < sizeof(unsigned int));
constexpr size_t BitDiff = BITSIZEOF(unsigned int) - BITSIZEOF(U);
return __builtin_clz(static_cast<unsigned int>(u)) - BitDiff;
}
} else {
return BITSIZEOF(U);
}
}
}
static_assert(CountLeadingZeros(~static_cast<u64>(0)) == 0);
static_assert(CountLeadingZeros(static_cast<u64>(1) << 5) == BITSIZEOF(u64) - 1 - 5);
static_assert(CountLeadingZeros(static_cast<u64>(0)) == BITSIZEOF(u64));
2022-04-03 10:51:46 -07:00
template<std::integral T>
constexpr ALWAYS_INLINE int CountTrailingZeros(T x) {
if (std::is_constant_evaluated()) {
auto count = 0;
for (size_t i = 0; i < BITSIZEOF(T) && (x & 1) == 0; ++i) {
x >>= 1;
++count;
}
return count;
} else {
using U = typename std::make_unsigned<T>::type;
2022-04-03 10:51:46 -07:00
if (const U u = static_cast<U>(x); u != 0) {
if constexpr (std::is_same<U, unsigned long long>::value) {
return __builtin_ctzll(u);
} else if constexpr (std::is_same<U, unsigned long>::value) {
return __builtin_ctzl(u);
} else if constexpr(std::is_same<U, unsigned int>::value) {
return __builtin_ctz(u);
} else {
static_assert(sizeof(U) < sizeof(unsigned int));
return __builtin_ctz(static_cast<unsigned int>(u));
}
2020-04-06 03:15:24 -07:00
} else {
return BITSIZEOF(U);
2020-04-06 03:15:24 -07:00
}
}
}
static_assert(CountTrailingZeros(~static_cast<u64>(0)) == 0);
static_assert(CountTrailingZeros(static_cast<u64>(1) << 5) == 5);
static_assert(CountTrailingZeros(static_cast<u64>(0)) == BITSIZEOF(u64));
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE bool IsPowerOfTwo(T x) {
return x > 0 && ResetLeastSignificantOneBit(x) == 0;
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T CeilingPowerOfTwo(T x) {
AMS_ASSERT(x > 0);
return T(1) << (BITSIZEOF(T) - CountLeadingZeros(T(x - 1)));
}
2022-04-03 10:51:46 -07:00
template<std::integral T>
2020-04-06 03:15:24 -07:00
constexpr ALWAYS_INLINE T FloorPowerOfTwo(T x) {
AMS_ASSERT(x > 0);
return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1);
}
2022-04-03 10:51:46 -07:00
template<std::integral T, std::integral U>
constexpr ALWAYS_INLINE T DivideUp(T v, U d) {
using Unsigned = typename std::make_unsigned<U>::type;
2022-04-03 10:51:46 -07:00
using Sum = decltype(T{0} + U{0});
#if defined(ATMOSPHERE_IS_STRATOSPHERE)
AMS_ASSERT(v >= 0);
AMS_ASSERT(d > 0);
AMS_ASSERT(static_cast<Sum>(v) <= (std::numeric_limits<Sum>::max() - static_cast<Sum>(d) + static_cast<Sum>(1)));
#endif
const Unsigned add = static_cast<Unsigned>(d) - 1;
2022-04-03 10:51:46 -07:00
return static_cast<T>((static_cast<Sum>(v) + static_cast<Sum>(add)) / static_cast<Sum>(d));
}
2022-04-03 10:51:46 -07:00
template<std::integral T, T N, T D>
constexpr ALWAYS_INLINE T ScaleByConstantFactorUp(const T V) {
/* Multiplying and dividing by large numerator/denominator can cause error to be introduced. */
/* This algorithm multiples/divides in stages, so as to mitigate this (particularly with large denominator). */
/* Justification for the algorithm. */
/* Calculate: (V * N) / D */
/* = (Quot_V * D + Rem_V) * (Quot_N * D + Rem_N) / D */
/* = (D^2 * (Quot_V * Quot_N) + D * (Quot_V * Rem_N + Rem_V * Quot_N) + Rem_V * Rem_N) / D */
/* = (D * Quot_V * Quot_N) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + ((Rem_V * Rem_N) / D) */
/* Calculate quotients/remainders. */
const T Quot_V = V / D;
const T Rem_V = V % D;
constexpr T Quot_N = N / D;
constexpr T Rem_N = N % D;
/* Calculate the remainder multiplication, rounding up. */
const T rem_mult = ((Rem_V * Rem_N) + (D - 1)) / D;
/* Calculate results. */
return (D * Quot_N * Quot_V) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + rem_mult;
}
template<std::integral T>
constexpr ALWAYS_INLINE T RotateLeft(T v, int n) {
using Unsigned = typename std::make_unsigned<T>::type;
static_assert(sizeof(Unsigned) == sizeof(T));
return static_cast<T>(std::rotl<Unsigned>(static_cast<Unsigned>(v), n));
}
template<std::integral T>
constexpr ALWAYS_INLINE T RotateRight(T v, int n) {
using Unsigned = typename std::make_unsigned<T>::type;
static_assert(sizeof(Unsigned) == sizeof(T));
return static_cast<T>(std::rotr<Unsigned>(static_cast<Unsigned>(v), n));
}
2020-02-04 01:24:16 +00:00
}