Atmosphere/stratosphere/fatal/source/fatal_debug.cpp

283 lines
9.5 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <map>
#include <switch.h>
#include "fatal_debug.hpp"
#include "fatal_config.hpp"
static bool IsAddressReadable(Handle debug_handle, u64 address, u64 size, MemoryInfo *o_mi) {
MemoryInfo mi;
u32 pi;
if (o_mi == NULL) {
o_mi = &mi;
}
if (R_FAILED(svcQueryDebugProcessMemory(o_mi, &pi, debug_handle, address))) {
return false;
}
/* Must be readable */
if ((o_mi->perm & Perm_R) != Perm_R) {
return false;
}
/* Must have space for both userdata address and userdata size. */
if (address < o_mi->addr || o_mi->addr + o_mi->size < address + size) {
return false;
}
return true;
}
static bool CheckThreadIsFatalCaller(FatalThrowContext *ctx, u64 debug_handle, u64 thread_id, u64 thread_tls_addr, ThreadContext *thread_ctx) {
/* Verify that the thread is running or waiting. */
{
u64 _;
u32 thread_state;
if (R_FAILED(svcGetDebugThreadParam(&_, &thread_state, debug_handle, thread_id, DebugThreadParam_State))) {
return false;
}
if (thread_state > 1) {
return false;
}
}
/* Get the thread context. */
if (R_FAILED(svcGetDebugThreadContext(thread_ctx, debug_handle, thread_id, 0xF))) {
return false;
}
/* Check if PC is readable. */
if (!IsAddressReadable(debug_handle, thread_ctx->pc.x, sizeof(u32), NULL)) {
return false;
}
/* Try to read the current instruction. */
u32 insn;
if (R_FAILED(svcReadDebugProcessMemory(&insn, debug_handle, thread_ctx->pc.x, sizeof(insn)))) {
return false;
}
/* If the instruction isn't svcSendSyncRequest, it's not the fatal caller. */
if (insn != 0xD4000421) {
return false;
}
/* The fatal caller will have readable tls. */
if (!IsAddressReadable(debug_handle, thread_tls_addr, 0x100, NULL)) {
return false;
}
/* Read in the fatal caller's tls. */
u8 thread_tls[0x100];
if (R_FAILED(svcReadDebugProcessMemory(thread_tls, debug_handle, thread_tls_addr, sizeof(thread_tls)))) {
return false;
}
/* Replace our tls with the fatal caller's. */
std::memcpy(armGetTls(), thread_tls, sizeof(thread_tls));
/* Parse the command that the thread sent. */
{
IpcParsedCommand r;
if (R_FAILED(ipcParse(&r))) {
return false;
}
/* Fatal command takes in a PID, only one buffer max. */
if (!r.HasPid || r.NumStatics || r.NumStaticsOut || r.NumHandles) {
return false;
}
struct {
u32 magic;
u32 version;
u64 cmd_id;
u32 err_code;
} *raw = (decltype(raw))(r.Raw);
if (raw->magic != SFCI_MAGIC) {
return false;
}
if (raw->cmd_id > 2) {
return false;
}
if (raw->cmd_id != 2 && r.NumBuffers) {
return false;
}
if (raw->err_code != ctx->error_code) {
return false;
}
}
/* We found our caller. */
return true;
}
void TryCollectDebugInformation(FatalThrowContext *ctx, u64 pid) {
Handle debug_handle;
if (R_SUCCEEDED(svcDebugActiveProcess(&debug_handle, pid))) {
/* Ensure we close the debugged process. */
ON_SCOPE_EXIT { svcCloseHandle(debug_handle); };
/* First things first, check if process is 64 bits, and get list of thread infos. */
std::unordered_map<u64, u64> thread_id_to_tls;
{
bool got_attach_process = false;
DebugEventInfo d;
while (R_SUCCEEDED(svcGetDebugEvent((u8 *)&d, debug_handle))) {
if (d.type == DebugEventType::AttachProcess) {
ctx->cpu_ctx.is_aarch32 = (d.info.attach_process.flags & 1) == 0;
memcpy(ctx->proc_name, d.info.attach_process.name, sizeof(d.info.attach_process.name));
got_attach_process = true;
} else if (d.type == DebugEventType::AttachThread) {
thread_id_to_tls[d.info.attach_thread.thread_id] = d.info.attach_thread.tls_address;
}
}
if (!got_attach_process) {
return;
}
}
/* TODO: Try to collect information on 32-bit fatals. This shouldn't really matter for any real use case. */
if (ctx->cpu_ctx.is_aarch32) {
return;
}
/* Welcome to hell. */
bool found_fatal_caller = false;
u64 thread_id = 0;
ThreadContext thread_ctx;
{
/* We start by trying to get a list of threads. */
u32 thread_count;
u64 thread_ids[0x60];
if (R_FAILED(svcGetThreadList(&thread_count, thread_ids, 0x60, debug_handle))) {
return;
}
/* We need to locate the thread that's called fatal. */
for (u32 i = 0; i < thread_count; i++) {
const u64 cur_thread_id = thread_ids[i];
if (thread_id_to_tls.find(cur_thread_id) == thread_id_to_tls.end()) {
continue;
}
if (CheckThreadIsFatalCaller(ctx, debug_handle, cur_thread_id, thread_id_to_tls[cur_thread_id], &thread_ctx)) {
thread_id = cur_thread_id;
found_fatal_caller = true;
break;
}
}
if (!found_fatal_caller) {
return;
}
}
if (R_FAILED(svcGetDebugThreadContext(&thread_ctx, debug_handle, thread_id, 0xF))) {
return;
}
/* So we found our caller. */
for (u32 i = 0; i < 29; i++) {
/* GetDebugThreadContext won't give us any of these registers, because thread is in SVC :( */
ctx->has_gprs[i] = false;
}
for (u32 i = 29; i < NumAarch64Gprs; i++) {
ctx->has_gprs[i] = true;
}
ctx->cpu_ctx.aarch64_ctx.fp = thread_ctx.fp;
ctx->cpu_ctx.aarch64_ctx.lr = thread_ctx.lr;
ctx->cpu_ctx.aarch64_ctx.sp = thread_ctx.sp;
ctx->cpu_ctx.aarch64_ctx.pc = thread_ctx.pc.x;
/* Parse a stack trace. */
u64 cur_fp = thread_ctx.fp;
for (unsigned int i = 0; i < sizeof(ctx->cpu_ctx.aarch64_ctx.stack_trace)/sizeof(u64); i++) {
/* Validate the current frame. */
if (cur_fp == 0 || (cur_fp & 0xF)) {
break;
}
/* Read a new frame. */
StackFrame cur_frame;
if (R_FAILED(svcReadDebugProcessMemory(&cur_frame, debug_handle, cur_fp, sizeof(StackFrame)))) {
break;
}
/* Advance to the next frame. */
ctx->cpu_ctx.aarch64_ctx.stack_trace[ctx->cpu_ctx.aarch64_ctx.stack_trace_size++] = cur_frame.lr;
cur_fp = cur_frame.fp;
}
/* Try to read up to 0x100 of stack. */
for (size_t sz = 0x100; sz > 0; sz -= 0x10) {
if (IsAddressReadable(debug_handle, ctx->cpu_ctx.aarch64_ctx.sp, sz, nullptr)) {
if (R_SUCCEEDED(svcReadDebugProcessMemory(ctx->stack_dump, debug_handle, ctx->cpu_ctx.aarch64_ctx.sp, sz))) {
ctx->stack_dump_size = sz;
}
break;
}
}
2019-03-26 17:04:32 +01:00
/* Helper to guess start address. */
auto TryGuessStartAddress = [&](u64 guess) {
MemoryInfo mi;
u32 pi;
if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess)) || mi.perm != Perm_Rx) {
2019-03-26 17:04:32 +01:00
return false;
}
/* Iterate backwards until we find the memory before the code region. */
while (mi.addr > 0) {
if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess))) {
2019-03-26 17:04:32 +01:00
return false;
}
if (mi.type == MemType_Unmapped) {
/* Code region will be at the end of the unmapped region preceding it. */
ctx->cpu_ctx.aarch64_ctx.start_address = mi.addr + mi.size;
2019-03-26 17:04:32 +01:00
return true;
}
guess -= 4;
}
2019-03-26 17:04:32 +01:00
return false;
};
/* Parse the starting address. */
{
if (TryGuessStartAddress(thread_ctx.pc.x)) {
return;
}
if (TryGuessStartAddress(thread_ctx.lr)) {
return;
}
for (size_t i = 0; i < ctx->cpu_ctx.aarch64_ctx.stack_trace_size; i++) {
if (TryGuessStartAddress(ctx->cpu_ctx.aarch64_ctx.stack_trace[i])) {
return;
}
}
}
}
}