Clean up Fusee's SE API, removing unneeded functionality

This commit is contained in:
Michael Scire 2018-03-25 17:16:17 -06:00
parent 3140ddc301
commit 53cf46d20f
2 changed files with 1 additions and 302 deletions

View File

@ -4,19 +4,12 @@
/*#include "interrupt.h"*/ /*#include "interrupt.h"*/
#include "se.h" #include "se.h"
void trigger_se_rsa_op(void *buf, size_t size);
void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size); void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size);
/* Globals for driver. */ /* Globals for driver. */
static unsigned int (*g_se_callback)(void);
static unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX]; static unsigned int g_se_modulus_sizes[KEYSLOT_RSA_MAX];
static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX]; static unsigned int g_se_exp_sizes[KEYSLOT_RSA_MAX];
static bool g_se_generated_vector = false;
static uint8_t g_se_stored_test_vector[0x10];
/* Initialize a SE linked list. */ /* Initialize a SE linked list. */
void ll_init(se_ll_t *ll, void *buffer, size_t size) { void ll_init(se_ll_t *ll, void *buffer, size_t size) {
ll->num_entries = 0; /* 1 Entry. */ ll->num_entries = 0; /* 1 Entry. */
@ -30,23 +23,6 @@ void ll_init(se_ll_t *ll, void *buffer, size_t size) {
} }
} }
void set_security_engine_callback(unsigned int (*callback)(void)) {
if (callback == NULL || g_se_callback != NULL) {
generic_panic();
}
g_se_callback = callback;
}
/* Fires on Security Engine operation completion. */
void se_operation_completed(void) {
SECURITY_ENGINE->INT_ENABLE_REG = 0;
if (g_se_callback != NULL) {
g_se_callback();
g_se_callback = NULL;
}
}
void se_check_error_status_reg(void) { void se_check_error_status_reg(void) {
if (SECURITY_ENGINE->ERR_STATUS_REG) { if (SECURITY_ENGINE->ERR_STATUS_REG) {
generic_panic(); generic_panic();
@ -59,45 +35,12 @@ void se_check_for_error(void) {
} }
} }
void se_trigger_interrupt(void) {
/* TODO intr_set_pending(INTERRUPT_ID_USER_SECURITY_ENGINE); */
}
void se_verify_flags_cleared(void) { void se_verify_flags_cleared(void) {
if (SECURITY_ENGINE->FLAGS_REG & 3) { if (SECURITY_ENGINE->FLAGS_REG & 3) {
generic_panic(); generic_panic();
} }
} }
void se_generate_test_vector(void *vector) {
/* TODO: Implement real test vector generation. */
memset(vector, 0, 0x10);
}
void se_validate_stored_vector(void) {
if (!g_se_generated_vector) {
generic_panic();
}
uint8_t ALIGN(16) calc_vector[0x10];
se_generate_test_vector(calc_vector);
/* Ensure nobody's messed with the security engine while we slept. */
if (memcmp(calc_vector, g_se_stored_test_vector, 0x10) != 0) {
generic_panic();
}
}
void se_generate_stored_vector(void) {
if (g_se_generated_vector) {
generic_panic();
}
se_generate_test_vector(g_se_stored_test_vector);
g_se_generated_vector = true;
}
/* Set the flags for an AES keyslot. */ /* Set the flags for an AES keyslot. */
void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) { void set_aes_keyslot_flags(unsigned int keyslot, unsigned int flags) {
if (keyslot >= KEYSLOT_AES_MAX) { if (keyslot >= KEYSLOT_AES_MAX) {
@ -234,93 +177,6 @@ void decrypt_data_into_keyslot(unsigned int keyslot_dst, unsigned int keyslot_sr
trigger_se_blocking_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size); trigger_se_blocking_op(OP_START, NULL, 0, wrapped_key, wrapped_key_size);
} }
void se_aes_crypt_insecure_internal(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, unsigned int crypt_config, bool encrypt, unsigned int (*callback)(void)) {
if (keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
if (size == 0) {
return;
}
/* Setup Config register. */
if (encrypt) {
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
} else {
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_DEC | DST_MEMORY);
}
/* Setup Crypto register. */
SECURITY_ENGINE->CRYPTO_REG = crypt_config | (keyslot << 24) | (encrypt << 8);
/* Mark this encryption as insecure -- this makes the SE not a secure busmaster. */
SECURITY_ENGINE->CRYPTO_REG |= 0x80000000;
/* Appropriate number of blocks. */
SECURITY_ENGINE->BLOCK_COUNT_REG = (size >> 4) - 1;
/* Set the callback, for after the async operation. */
set_security_engine_callback(callback);
/* Enable SE Interrupt firing for async op. */
SECURITY_ENGINE->INT_ENABLE_REG = 0x10;
/* Setup Input/Output lists */
SECURITY_ENGINE->IN_LL_ADDR_REG = in_ll_paddr;
SECURITY_ENGINE->OUT_LL_ADDR_REG = out_ll_paddr;
/* Set registers for operation. */
SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG;
SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG;
SECURITY_ENGINE->OPERATION_REG = 1;
}
void se_aes_ctr_crypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *ctr, unsigned int (*callback)(void)) {
/* Unknown what this write does, but official code writes it for CTR mode. */
SECURITY_ENGINE->_0x80C = 1;
set_se_ctr(ctr);
se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x81E, true, callback);
}
void se_aes_cbc_encrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) {
set_aes_keyslot_iv(keyslot, iv, 0x10);
se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x44, true, callback);
}
void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void)) {
set_aes_keyslot_iv(keyslot, iv, 0x10);
se_aes_crypt_insecure_internal(keyslot, out_ll_paddr, in_ll_paddr, size, 0x66, false, callback);
}
void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*callback)(void)) {
uint8_t ALIGN(16) stack_buf[KEYSIZE_RSA_MAX];
if (keyslot >= KEYSLOT_RSA_MAX || size > KEYSIZE_RSA_MAX) {
generic_panic();
}
/* Endian swap the input. */
for (size_t i = 0; i < size; i++) {
stack_buf[i] = *((uint8_t *)buf + size - i - 1);
}
SECURITY_ENGINE->CONFIG_REG = (ALG_RSA | DST_RSAREG);
SECURITY_ENGINE->RSA_CONFIG = keyslot << 24;
SECURITY_ENGINE->RSA_KEY_SIZE_REG = (g_se_modulus_sizes[keyslot] >> 6) - 1;
SECURITY_ENGINE->RSA_EXP_SIZE_REG = g_se_exp_sizes[keyslot] >> 2;
set_security_engine_callback(callback);
/* Enable SE Interrupt firing for async op. */
SECURITY_ENGINE->INT_ENABLE_REG = 0x10;
trigger_se_rsa_op(stack_buf, size);
while (!(SECURITY_ENGINE->INT_STATUS_REG & 2)) { /* Wait a while */ }
}
void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) { void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size) {
uint8_t ALIGN(16) stack_buf[KEYSIZE_RSA_MAX]; uint8_t ALIGN(16) stack_buf[KEYSIZE_RSA_MAX];
@ -414,20 +270,6 @@ bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const v
return memcmp(h_buf, validate_hash, 0x20) == 0; return memcmp(h_buf, validate_hash, 0x20) == 0;
} }
void trigger_se_rsa_op(void *buf, size_t size) {
se_ll_t in_ll;
ll_init(&in_ll, (void *)buf, size);
/* Set the input LL. */
SECURITY_ENGINE->IN_LL_ADDR_REG = (uint32_t) get_physical_address(&in_ll);
/* Set registers for operation. */
SECURITY_ENGINE->ERR_STATUS_REG = SECURITY_ENGINE->ERR_STATUS_REG;
SECURITY_ENGINE->INT_STATUS_REG = SECURITY_ENGINE->INT_STATUS_REG;
SECURITY_ENGINE->OPERATION_REG = 1;
}
void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) { void trigger_se_blocking_op(unsigned int op, void *dst, size_t dst_size, const void *src, size_t src_size) {
se_ll_t in_ll; se_ll_t in_ll;
se_ll_t out_ll; se_ll_t out_ll;
@ -674,132 +516,3 @@ void se_generate_random(unsigned int keyslot, void *dst, size_t size) {
} }
} }
/* SE context save API. */
void se_set_in_context_save_mode(bool is_context_save_mode) {
uint32_t val = SECURITY_ENGINE->_0x0;
if (is_context_save_mode) {
val |= 0x10000;
} else {
val &= 0xFFFEFFFF;
}
SECURITY_ENGINE->_0x0 = val;
/* Perform a useless read from flags reg. */
(void)(SECURITY_ENGINE->FLAGS_REG);
}
void se_generate_random_key(unsigned int dst_keyslot, unsigned int rng_keyslot) {
if (dst_keyslot >= KEYSLOT_AES_MAX || rng_keyslot >= KEYSLOT_AES_MAX) {
generic_panic();
}
/* Setup Config. */
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_KEYTAB);
SECURITY_ENGINE->CRYPTO_REG = (rng_keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 4;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
/* Generate low part of key. */
SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8);
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
/* Generate high part of key. */
SECURITY_ENGINE->CRYPTO_KEYTABLE_DST_REG = (dst_keyslot << 8) | 1;
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
}
void se_generate_srk(unsigned int srkgen_keyslot) {
SECURITY_ENGINE->CONFIG_REG = (ALG_RNG | DST_SRK);
SECURITY_ENGINE->CRYPTO_REG = (srkgen_keyslot << 24) | 0x108;
SECURITY_ENGINE->RNG_CONFIG_REG = 6;
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
trigger_se_blocking_op(OP_START, NULL, 0, NULL, 0);
}
void se_encrypt_with_srk(void *dst, size_t dst_size, const void *src, size_t src_size) {
uint8_t ALIGN(16) output[0x80];
uint8_t *aligned_out = (uint8_t *)(((uintptr_t)output + 0x7F) & ~0x3F);
if (dst_size > 0x10) {
generic_panic();
}
if (dst_size) {
trigger_se_blocking_op(OP_CTX_SAVE, aligned_out, dst_size, src, src_size);
memcpy(dst, aligned_out, dst_size);
} else {
trigger_se_blocking_op(OP_CTX_SAVE, aligned_out, 0, src, src_size);
}
}
void se_save_context(unsigned int srkgen_keyslot, unsigned int rng_keyslot, void *dst) {
uint8_t ALIGN(16) _work_buf[0x80];
uint8_t *work_buf = (uint8_t *)(((uintptr_t)_work_buf + 0x7F) & ~0x3F);
/* Generate the SRK (context save encryption key). */
se_generate_random_key(srkgen_keyslot, rng_keyslot);
se_generate_srk(srkgen_keyslot);
se_generate_random(rng_keyslot, work_buf, 0x10);
/* Save random initial block. */
SECURITY_ENGINE->CONFIG_REG = (ALG_AES_ENC | DST_MEMORY);
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst, 0x10, work_buf, 0x10);
/* Save Sticky Bits. */
for (unsigned int i = 0; i < 0x2; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_STICKY_BITS) | (i << CTX_SAVE_STICKY_BIT_INDEX_SHIFT);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x10 + (i * 0x10), 0x10, NULL, 0);
}
/* Save AES Key Table. */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_LOW_BITS);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x30 + (i * 0x20), 0x10, NULL, 0);
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_HIGH_BITS);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x40 + (i * 0x20), 0x10, NULL, 0);
}
/* Save AES Original IVs. */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_ORIGINAL_IV);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x230 + (i * 0x10), 0x10, NULL, 0);
}
/* Save AES Updated IVs */
for (unsigned int i = 0; i < KEYSLOT_AES_MAX; i++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_AES) | (i << CTX_SAVE_KEY_INDEX_SHIFT) | (CTX_SAVE_KEY_UPDATED_IV);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x330 + (i * 0x10), 0x10, NULL, 0);
}
/* Save RSA Keytable. */
uint8_t *rsa_ctx_out = (uint8_t *)dst + 0x430;
for (unsigned int rsa_key = 0; rsa_key < KEYSLOT_RSA_MAX; rsa_key++) {
for (unsigned int mod_exp = 0; mod_exp < 2; mod_exp++) {
for (unsigned int sub_block = 0; sub_block < 0x10; sub_block++) {
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_KEYTABLE_RSA) | ((2 * rsa_key + (1 - mod_exp)) << CTX_SAVE_RSA_KEY_INDEX_SHIFT) | (sub_block << CTX_SAVE_RSA_KEY_BLOCK_INDEX_SHIFT);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(rsa_ctx_out, 0x10, NULL, 0);
rsa_ctx_out += 0x10;
}
}
}
/* Save "Known Pattern. " */
static const uint8_t context_save_known_pattern[0x10] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f};
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_MEM);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(dst + 0x830, 0x10, context_save_known_pattern, 0x10);
/* Save SRK into PMC registers. */
SECURITY_ENGINE->CONTEXT_SAVE_CONFIG_REG = (CTX_SAVE_SRC_SRK);
SECURITY_ENGINE->BLOCK_COUNT_REG = 0;
se_encrypt_with_srk(work_buf, 0, NULL, 0);
SECURITY_ENGINE->CONFIG_REG = 0;
se_encrypt_with_srk(work_buf, 0, NULL, 0);
}

View File

@ -161,7 +161,6 @@ static inline volatile security_engine_t *get_security_engine(void) {
#define SECURITY_ENGINE (get_security_engine()) #define SECURITY_ENGINE (get_security_engine())
/* This function MUST be registered to fire on the appropriate interrupt. */ /* This function MUST be registered to fire on the appropriate interrupt. */
void se_operation_completed(void);
void se_check_error_status_reg(void); void se_check_error_status_reg(void);
void se_check_for_error(void); void se_check_for_error(void);
@ -183,12 +182,6 @@ void set_rsa_keyslot(unsigned int keyslot, const void *modulus, size_t modulus_s
void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size); void set_aes_keyslot_iv(unsigned int keyslot, const void *iv, size_t iv_size);
void set_se_ctr(const void *ctr); void set_se_ctr(const void *ctr);
/* Insecure AES API */
void se_aes_ctr_crypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *ctr, unsigned int (*callback)(void));
void se_aes_cbc_encrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void));
void se_aes_cbc_decrypt_insecure(unsigned int keyslot, uint32_t out_ll_paddr, uint32_t in_ll_paddr, size_t size, const void *iv, unsigned int (*callback)(void));
/* Secure AES API */ /* Secure AES API */
void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size); void se_compute_aes_128_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size);
void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size); void se_compute_aes_256_cmac(unsigned int keyslot, void *cmac, size_t cmac_size, const void *data, size_t data_size);
@ -202,7 +195,6 @@ void se_aes_256_cbc_encrypt(unsigned int keyslot, void *dst, size_t dst_size, co
void se_calculate_sha256(void *dst, const void *src, size_t src_size); void se_calculate_sha256(void *dst, const void *src, size_t src_size);
/* RSA API */ /* RSA API */
void se_exp_mod(unsigned int keyslot, void *buf, size_t size, unsigned int (*callback)(void));
void se_get_exp_mod_output(void *buf, size_t size); void se_get_exp_mod_output(void *buf, size_t size);
void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size); void se_synchronous_exp_mod(unsigned int keyslot, void *dst, size_t dst_size, const void *src, size_t src_size);
bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const void *modulus, size_t modulus_size, const void *data, size_t data_size); bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const void *modulus, size_t modulus_size, const void *data, size_t data_size);
@ -211,10 +203,4 @@ bool se_rsa2048_pss_verify(const void *signature, size_t signature_size, const v
void se_initialize_rng(unsigned int keyslot); void se_initialize_rng(unsigned int keyslot);
void se_generate_random(unsigned int keyslot, void *dst, size_t size); void se_generate_random(unsigned int keyslot, void *dst, size_t size);
/* SE context save API. */
void se_generate_srk(unsigned int srkgen_keyslot);
void se_set_in_context_save_mode(bool is_context_save_mode);
void se_generate_random_key(unsigned int dst_keyslot, unsigned int rng_keyslot);
void se_save_context(unsigned int srk_keyslot, unsigned int rng_keyslot, void *dst);
#endif /* EXOSPHERE_SE_H */ #endif /* EXOSPHERE_SE_H */