/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma once #include <stratosphere/fs/fs_common.hpp> #include <stratosphere/fs/fs_file.hpp> #include <stratosphere/fs/fs_directory.hpp> #include <stratosphere/fs/fs_filesystem.hpp> #include <stratosphere/fs/fs_path.hpp> namespace ams::fssystem { /* ACCURATE_TO_VERSION: 13.4.0.0 */ namespace impl { template<typename F> concept IterateDirectoryHandler = requires (F f, const fs::Path &path, const fs::DirectoryEntry &entry) { { f(path, entry) } -> std::convertible_to<::ams::Result>; }; /* Iteration. */ template<IterateDirectoryHandler OnEnterDir, IterateDirectoryHandler OnExitDir, IterateDirectoryHandler OnFile> Result IterateDirectoryRecursivelyImpl(fs::fsa::IFileSystem *fs, fs::Path &work_path, fs::DirectoryEntry *dir_ent, OnEnterDir on_enter_dir, OnExitDir on_exit_dir, OnFile on_file) { /* Open the directory. */ std::unique_ptr<fs::fsa::IDirectory> dir; R_TRY(fs->OpenDirectory(std::addressof(dir), work_path, fs::OpenDirectoryMode_All)); /* Read and handle entries. */ while (true) { /* Read a single entry. */ s64 read_count = 0; R_TRY(dir->Read(std::addressof(read_count), dir_ent, 1)); /* If we're out of entries, we're done. */ if (read_count == 0) { break; } /* Append child path. */ R_TRY(work_path.AppendChild(dir_ent->name)); { if (dir_ent->type == fs::DirectoryEntryType_Directory) { /* Enter directory. */ R_TRY(on_enter_dir(work_path, *dir_ent)); /* Recurse. */ R_TRY(IterateDirectoryRecursivelyImpl(fs, work_path, dir_ent, on_enter_dir, on_exit_dir, on_file)); /* Exit directory. */ R_TRY(on_exit_dir(work_path, *dir_ent)); } else { /* Call file handler. */ R_TRY(on_file(work_path, *dir_ent)); } } R_TRY(work_path.RemoveChild()); } R_SUCCEED(); } /* TODO: Cleanup. */ } /* Iteration API */ template<impl::IterateDirectoryHandler OnEnterDir, impl::IterateDirectoryHandler OnExitDir, impl::IterateDirectoryHandler OnFile> Result IterateDirectoryRecursively(fs::fsa::IFileSystem *fs, const fs::Path &root_path, fs::DirectoryEntry *dir_ent_buf, OnEnterDir on_enter_dir, OnExitDir on_exit_dir, OnFile on_file) { /* Create work path from the root path. */ fs::Path work_path; R_TRY(work_path.Initialize(root_path)); R_RETURN(impl::IterateDirectoryRecursivelyImpl(fs, work_path, dir_ent_buf, on_enter_dir, on_exit_dir, on_file)); } template<impl::IterateDirectoryHandler OnEnterDir, impl::IterateDirectoryHandler OnExitDir, impl::IterateDirectoryHandler OnFile> Result IterateDirectoryRecursively(fs::fsa::IFileSystem *fs, const fs::Path &root_path, OnEnterDir on_enter_dir, OnExitDir on_exit_dir, OnFile on_file) { fs::DirectoryEntry dir_entry = {}; R_RETURN(IterateDirectoryRecursively(fs, root_path, std::addressof(dir_entry), on_enter_dir, on_exit_dir, on_file)); } template<impl::IterateDirectoryHandler OnEnterDir, impl::IterateDirectoryHandler OnExitDir, impl::IterateDirectoryHandler OnFile> Result IterateDirectoryRecursively(fs::fsa::IFileSystem *fs, OnEnterDir on_enter_dir, OnExitDir on_exit_dir, OnFile on_file) { R_RETURN(IterateDirectoryRecursively(fs, fs::MakeConstantPath("/"), on_enter_dir, on_exit_dir, on_file)); } /* TODO: Cleanup API */ /* Copy API. */ Result CopyFile(fs::fsa::IFileSystem *dst_fs, fs::fsa::IFileSystem *src_fs, const fs::Path &dst_path, const fs::Path &src_path, void *work_buf, size_t work_buf_size); ALWAYS_INLINE Result CopyFile(fs::fsa::IFileSystem *fs, const fs::Path &dst_path, const fs::Path &src_path, void *work_buf, size_t work_buf_size) { R_RETURN(CopyFile(fs, fs, dst_path, src_path, work_buf, work_buf_size)); } Result CopyDirectoryRecursively(fs::fsa::IFileSystem *dst_fs, fs::fsa::IFileSystem *src_fs, const fs::Path &dst_path, const fs::Path &src_path, fs::DirectoryEntry *entry, void *work_buf, size_t work_buf_size); ALWAYS_INLINE Result CopyDirectoryRecursively(fs::fsa::IFileSystem *fs, const fs::Path &dst_path, const fs::Path &src_path, fs::DirectoryEntry *entry, void *work_buf, size_t work_buf_size) { R_RETURN(CopyDirectoryRecursively(fs, fs, dst_path, src_path, entry, work_buf, work_buf_size)); } /* Locking utilities. */ class SemaphoreAdaptor : public os::Semaphore { public: SemaphoreAdaptor(int c, int mc) : os::Semaphore(c, mc) { /* ... */ } bool TryLock(int *out_acquired, int count) { AMS_ASSERT(count > 0); for (auto i = 0; i < count; ++i) { if (!this->TryAcquire()) { *out_acquired = i; return false; } } *out_acquired = count; return true; } void Unlock(int count) { if (count > 0) { this->Release(count); } } bool try_lock() { return this->TryAcquire(); } void unlock() { this->Release(); } }; Result TryAcquireCountSemaphore(util::unique_lock<SemaphoreAdaptor> *out, SemaphoreAdaptor *adaptor); class IUniqueLock { NON_COPYABLE(IUniqueLock); NON_MOVEABLE(IUniqueLock); public: virtual ~IUniqueLock() { /* ... */ } }; template<typename T> class UniqueLockWithPin final : public IUniqueLock, public ::ams::fs::impl::Newable { private: util::unique_lock<SemaphoreAdaptor> m_lock; T m_pinned_object; public: UniqueLockWithPin(util::unique_lock<SemaphoreAdaptor> lock, T obj) : m_lock(std::move(lock)), m_pinned_object(std::move(obj)) { /* ... */ } virtual ~UniqueLockWithPin() override { m_lock = {}; } }; template<typename T> class MultiLockWithPin final : public IUniqueLock, public ::ams::fs::impl::Newable { private: T m_pinned_object; SemaphoreAdaptor *m_semaphore_adaptor; int m_lock_count; public: MultiLockWithPin(T obj, SemaphoreAdaptor *adaptor) : m_pinned_object(std::move(obj)), m_semaphore_adaptor(adaptor), m_lock_count(0) { /* ... */ } virtual ~MultiLockWithPin() override { if (m_lock_count > 0) { m_semaphore_adaptor->Unlock(m_lock_count); } } Result Lock(int count) { AMS_ASSERT(m_lock_count == 0); R_UNLESS(m_semaphore_adaptor->TryLock(std::addressof(m_lock_count), count), fs::ResultOpenCountLimit()); R_SUCCEED(); } }; template<typename T> Result MakeUniqueLockWithPin(std::unique_ptr<IUniqueLock> *out, SemaphoreAdaptor *adaptor, T obj) { /* Create the semaphore unique lock. */ util::unique_lock<SemaphoreAdaptor> sema_lock; R_TRY(TryAcquireCountSemaphore(std::addressof(sema_lock), adaptor)); /* Create the output unique lock. */ auto result_lock = std::unique_ptr<UniqueLockWithPin<T>>(new UniqueLockWithPin<T>(std::move(sema_lock), std::move(obj))); R_UNLESS(result_lock != nullptr, fs::ResultAllocationMemoryFailedNew()); /* Set the output. */ *out = std::move(result_lock); R_SUCCEED(); } template<typename T> Result MakeUniqueLockWithPin(std::unique_ptr<IUniqueLock> *out, SemaphoreAdaptor *adaptor, int count, T obj) { /* Create the output unique lock. */ auto result_lock = std::unique_ptr<MultiLockWithPin<T>>(new MultiLockWithPin<T>(std::move(obj), adaptor)); R_UNLESS(result_lock != nullptr, fs::ResultAllocationMemoryFailedNew()); /* Acquire the output lock. */ R_TRY(result_lock->Lock(count)); /* Set the output. */ *out = std::move(result_lock); R_SUCCEED(); } /* Other utility. */ Result HasFile(bool *out, fs::fsa::IFileSystem *fs, const fs::Path &path); Result HasDirectory(bool *out, fs::fsa::IFileSystem *fs, const fs::Path &path); Result EnsureDirectory(fs::fsa::IFileSystem *fs, const fs::Path &path); template<s64 RetryMilliSeconds = 100, s32 MaxTryCount = 10> ALWAYS_INLINE Result RetryFinitelyForTargetLocked(auto f) { /* Retry sleeping between retries. */ constexpr TimeSpan RetryWaitTime = TimeSpan::FromMilliSeconds(RetryMilliSeconds); Result result = f(); for (int i = 0; i < MaxTryCount && fs::ResultTargetLocked::Includes(result); ++i) { os::SleepThread(RetryWaitTime); result = f(); } R_RETURN(result); } ALWAYS_INLINE Result RetryToAvoidTargetLocked(auto f) { R_RETURN((RetryFinitelyForTargetLocked<2, 25>(f))); } void AddCounter(void *counter, size_t counter_size, u64 value); }