/* * Copyright (c) 2018-2019 Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "fatal_debug.hpp" #include "fatal_config.hpp" namespace sts::fatal::srv { namespace { constexpr u32 SvcSendSyncRequestInstruction = 0xD4000421; struct StackFrame { u64 fp; u64 lr; }; bool IsThreadFatalCaller(u32 error_code, u32 debug_handle, u64 thread_id, u64 thread_tls_addr, ThreadContext *thread_ctx) { /* Verify that the thread is running or waiting. */ { u64 _; u32 _thread_state; if (R_FAILED(svcGetDebugThreadParam(&_, &_thread_state, debug_handle, thread_id, DebugThreadParam_State))) { return false; } const svc::ThreadState thread_state = static_cast(_thread_state); if (thread_state != svc::ThreadState::Waiting && thread_state != svc::ThreadState::Running) { return false; } } /* Get the thread context. */ if (R_FAILED(svcGetDebugThreadContext(thread_ctx, debug_handle, thread_id, svc::ThreadContextFlag_All))) { return false; } /* Try to read the current instruction. */ u32 insn; if (R_FAILED(svcReadDebugProcessMemory(&insn, debug_handle, thread_ctx->pc.x, sizeof(insn)))) { return false; } /* If the instruction isn't svcSendSyncRequest, it's not the fatal caller. */ if (insn != SvcSendSyncRequestInstruction) { return false; } /* Read in the fatal caller's TLS. */ u8 thread_tls[0x100]; if (R_FAILED(svcReadDebugProcessMemory(thread_tls, debug_handle, thread_tls_addr, sizeof(thread_tls)))) { return false; } /* HACK: We want to parse the command the fatal caller sent. */ /* The easiest way to do this is to copy their TLS over ours, and parse ours. */ std::memcpy(armGetTls(), thread_tls, sizeof(thread_tls)); { IpcParsedCommand r; if (R_FAILED(ipcParse(&r))) { return false; } /* Fatal command takes in a PID, only one buffer max. */ if (!r.HasPid || r.NumStatics || r.NumStaticsOut || r.NumHandles) { return false; } struct { u32 magic; u32 version; u64 cmd_id; u32 err_code; } *raw = (decltype(raw))(r.Raw); if (raw->magic != SFCI_MAGIC) { return false; } if (raw->cmd_id > 2) { return false; } if (raw->cmd_id != 2 && r.NumBuffers) { return false; } if (raw->err_code != error_code) { return false; } } /* We found our caller. */ return true; } bool TryGuessBaseAddress(u64 *out_base_address, u32 debug_handle, u64 guess) { MemoryInfo mi; u32 pi; if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess)) || mi.perm != Perm_Rx) { return false; } /* Iterate backwards until we find the memory before the code region. */ while (mi.addr > 0) { if (R_FAILED(svcQueryDebugProcessMemory(&mi, &pi, debug_handle, guess))) { return false; } if (mi.type == MemType_Unmapped) { /* Code region will be at the end of the unmapped region preceding it. */ *out_base_address = mi.addr + mi.size; return true; } guess = mi.addr - 4; } return false; } u64 GetBaseAddress(const ThrowContext *throw_ctx, const ThreadContext *thread_ctx, u32 debug_handle) { u64 base_address = 0; if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->pc.x)) { return base_address; } if (TryGuessBaseAddress(&base_address, debug_handle, thread_ctx->lr)) { return base_address; } for (size_t i = 0; i < throw_ctx->cpu_ctx.aarch64_ctx.stack_trace_size; i++) { if (TryGuessBaseAddress(&base_address, debug_handle, throw_ctx->cpu_ctx.aarch64_ctx.stack_trace[i])) { return base_address; } } return base_address; } } void TryCollectDebugInformation(ThrowContext *ctx, u64 process_id) { /* Try to debug the process. This may fail, if we called into ourself. */ os::ManagedHandle debug_handle; if (R_FAILED(svcDebugActiveProcess(debug_handle.GetPointer(), process_id))) { return; } /* First things first, check if process is 64 bits, and get list of thread infos. */ std::unordered_map thread_id_to_tls; { bool got_attach_process = false; svc::DebugEventInfo d; while (R_SUCCEEDED(svcGetDebugEvent(reinterpret_cast(&d), debug_handle.Get()))) { switch (d.type) { case svc::DebugEventType::AttachProcess: ctx->cpu_ctx.architecture = (d.info.attach_process.flags & 1) ? CpuContext::Architecture_Aarch64 : CpuContext::Architecture_Aarch32; std::memcpy(ctx->proc_name, d.info.attach_process.name, sizeof(d.info.attach_process.name)); got_attach_process = true; break; case svc::DebugEventType::AttachThread: thread_id_to_tls[d.info.attach_thread.thread_id] = d.info.attach_thread.tls_address; break; case svc::DebugEventType::Exception: case svc::DebugEventType::ExitProcess: case svc::DebugEventType::ExitThread: break; } } if (!got_attach_process) { return; } } /* TODO: Try to collect information on 32-bit fatals. This shouldn't really matter for any real use case. */ if (ctx->cpu_ctx.architecture == CpuContext::Architecture_Aarch32) { return; } /* Welcome to hell. Here, we try to identify which thread called into fatal. */ bool found_fatal_caller = false; u64 thread_id = 0; ThreadContext thread_ctx; { /* We start by trying to get a list of threads. */ u32 thread_count; u64 thread_ids[0x60]; if (R_FAILED(svcGetThreadList(&thread_count, thread_ids, 0x60, debug_handle.Get()))) { return; } /* We need to locate the thread that's called fatal. */ for (u32 i = 0; i < thread_count; i++) { const u64 cur_thread_id = thread_ids[i]; if (thread_id_to_tls.find(cur_thread_id) == thread_id_to_tls.end()) { continue; } if (IsThreadFatalCaller(ctx->error_code, debug_handle.Get(), cur_thread_id, thread_id_to_tls[cur_thread_id], &thread_ctx)) { thread_id = cur_thread_id; found_fatal_caller = true; break; } } if (!found_fatal_caller) { return; } } if (R_FAILED(svcGetDebugThreadContext(&thread_ctx, debug_handle.Get(), thread_id, svc::ThreadContextFlag_All))) { return; } /* Set register states. */ ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_FP, thread_ctx.fp); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_LR, thread_ctx.lr); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_SP, thread_ctx.sp); ctx->cpu_ctx.aarch64_ctx.SetRegisterValue(aarch64::RegisterName_PC, thread_ctx.pc.x); /* Parse a stack trace. */ u64 cur_fp = thread_ctx.fp; ctx->cpu_ctx.aarch64_ctx.stack_trace_size = 0; for (unsigned int i = 0; i < aarch64::CpuContext::MaxStackTraceDepth; i++) { /* Validate the current frame. */ if (cur_fp == 0 || (cur_fp & 0xF)) { break; } /* Read a new frame. */ StackFrame cur_frame = {}; if (R_FAILED(svcReadDebugProcessMemory(&cur_frame, debug_handle.Get(), cur_fp, sizeof(StackFrame)))) { break; } /* Advance to the next frame. */ ctx->cpu_ctx.aarch64_ctx.stack_trace[ctx->cpu_ctx.aarch64_ctx.stack_trace_size++] = cur_frame.lr; cur_fp = cur_frame.fp; } /* Try to read up to 0x100 of stack. */ for (size_t sz = 0x100; sz > 0; sz -= 0x10) { if (R_SUCCEEDED(svcReadDebugProcessMemory(ctx->stack_dump, debug_handle.Get(), thread_ctx.sp, sz))) { ctx->stack_dump_size = sz; break; } } /* Parse the base address. */ ctx->cpu_ctx.aarch64_ctx.SetBaseAddress(GetBaseAddress(ctx, &thread_ctx, debug_handle.Get())); } }