/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <stratosphere.hpp> #include "pm_resource_manager.hpp" namespace ams::pm::resource { namespace { constexpr svc::LimitableResource LimitableResources[] = { svc::LimitableResource_PhysicalMemoryMax, svc::LimitableResource_ThreadCountMax, svc::LimitableResource_EventCountMax, svc::LimitableResource_TransferMemoryCountMax, svc::LimitableResource_SessionCountMax, }; /* Definitions for limit differences over time. */ constexpr size_t ExtraSystemMemorySize400 = 10_MB; constexpr size_t ReservedMemorySize600 = 5_MB; /* Atmosphere always allocates extra memory for system usage. */ constexpr size_t ExtraSystemMemorySizeAtmosphere = 24_MB; /* Globals. */ constinit os::SdkMutex g_resource_limit_lock; constinit os::NativeHandle g_resource_limit_handles[ResourceLimitGroup_Count]; constinit spl::MemoryArrangement g_memory_arrangement = spl::MemoryArrangement_Standard; constinit u64 g_system_memory_boost_size = 0; constinit u64 g_extra_application_threads_available = 0; constinit u64 g_resource_limits[ResourceLimitGroup_Count][svc::LimitableResource_Count] = { [ResourceLimitGroup_System] = { [svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */ [svc::LimitableResource_ThreadCountMax] = 608, [svc::LimitableResource_EventCountMax] = 0, /* Initialized dynamically later. */ [svc::LimitableResource_TransferMemoryCountMax] = 0, /* Initialized dynamically later. */ [svc::LimitableResource_SessionCountMax] = 0, /* Initialized dynamically later. */ }, [ResourceLimitGroup_Application] = { [svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */ [svc::LimitableResource_ThreadCountMax] = 96, [svc::LimitableResource_EventCountMax] = 0, [svc::LimitableResource_TransferMemoryCountMax] = 32, [svc::LimitableResource_SessionCountMax] = 1, }, [ResourceLimitGroup_Applet] = { [svc::LimitableResource_PhysicalMemoryMax] = 0, /* Initialized dynamically later. */ [svc::LimitableResource_ThreadCountMax] = 96, [svc::LimitableResource_EventCountMax] = 0, [svc::LimitableResource_TransferMemoryCountMax] = 32, [svc::LimitableResource_SessionCountMax] = 5, }, }; constinit u64 g_memory_resource_limits[spl::MemoryArrangement_Count][ResourceLimitGroup_Count] = { [spl::MemoryArrangement_Standard] = { [ResourceLimitGroup_System] = 269_MB, [ResourceLimitGroup_Application] = 3285_MB, [ResourceLimitGroup_Applet] = 535_MB, }, [spl::MemoryArrangement_StandardForAppletDev] = { [ResourceLimitGroup_System] = 481_MB, [ResourceLimitGroup_Application] = 2048_MB, [ResourceLimitGroup_Applet] = 1560_MB, }, [spl::MemoryArrangement_StandardForSystemDev] = { [ResourceLimitGroup_System] = 328_MB, [ResourceLimitGroup_Application] = 3285_MB, [ResourceLimitGroup_Applet] = 476_MB, }, [spl::MemoryArrangement_Expanded] = { [ResourceLimitGroup_System] = 653_MB, [ResourceLimitGroup_Application] = 4916_MB, [ResourceLimitGroup_Applet] = 568_MB, }, [spl::MemoryArrangement_ExpandedForAppletDev] = { [ResourceLimitGroup_System] = 653_MB, [ResourceLimitGroup_Application] = 3285_MB, [ResourceLimitGroup_Applet] = 2199_MB, }, }; /* Helpers. */ Result SetMemoryResourceLimitLimitValue(ResourceLimitGroup group, u64 new_memory_limit) { const u64 old_memory_limit = g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax]; g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax] = new_memory_limit; { /* If we fail, restore the old memory limit. */ auto limit_guard = SCOPE_GUARD { g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax] = old_memory_limit; }; R_TRY(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(group), svc::LimitableResource_PhysicalMemoryMax, g_resource_limits[group][svc::LimitableResource_PhysicalMemoryMax])); limit_guard.Cancel(); } return ResultSuccess(); } Result SetResourceLimitLimitValues(ResourceLimitGroup group, u64 new_memory_limit) { /* First, set memory limit. */ R_TRY(SetMemoryResourceLimitLimitValue(group, new_memory_limit)); /* Set other limit values. */ for (size_t i = 0; i < svc::LimitableResource_Count; i++) { const auto resource = LimitableResources[i]; if (resource == svc::LimitableResource_PhysicalMemoryMax) { continue; } R_TRY(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(group), resource, g_resource_limits[group][resource])); } return ResultSuccess(); } inline ResourceLimitGroup GetResourceLimitGroup(const ldr::ProgramInfo *info) { switch (info->flags & ldr::ProgramInfoFlag_ApplicationTypeMask) { case ldr::ProgramInfoFlag_Application: return ResourceLimitGroup_Application; case ldr::ProgramInfoFlag_Applet: return ResourceLimitGroup_Applet; default: return ResourceLimitGroup_System; } } void WaitResourceAvailable(ResourceLimitGroup group) { const auto reslimit_hnd = GetResourceLimitHandle(group); for (size_t i = 0; i < svc::LimitableResource_Count; i++) { const auto resource = LimitableResources[i]; s64 value = 0; while (true) { R_ABORT_UNLESS(svc::GetResourceLimitCurrentValue(&value, reslimit_hnd, resource)); if (value == 0) { break; } os::SleepThread(TimeSpan::FromMilliSeconds(1)); } } } void WaitApplicationMemoryAvailable() { u64 value = 0; while (true) { R_ABORT_UNLESS(svc::GetSystemInfo(&value, svc::SystemInfoType_UsedPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Application)); if (value == 0) { break; } os::SleepThread(TimeSpan::FromMilliSeconds(1)); } } bool IsKTraceEnabled() { u64 value = 0; R_ABORT_UNLESS(svc::GetInfo(std::addressof(value), svc::InfoType_MesosphereMeta, svc::InvalidHandle, svc::MesosphereMetaInfo_IsKTraceEnabled)); return value != 0; } } /* Resource API. */ Result InitializeResourceManager() { /* Create resource limit handles. */ for (size_t i = 0; i < ResourceLimitGroup_Count; i++) { if (i == ResourceLimitGroup_System) { u64 value = 0; R_ABORT_UNLESS(svc::GetInfo(&value, svc::InfoType_ResourceLimit, svc::InvalidHandle, 0)); g_resource_limit_handles[i] = static_cast<svc::Handle>(value); } else { R_ABORT_UNLESS(svc::CreateResourceLimit(g_resource_limit_handles + i)); } } /* Adjust memory limits based on hos firmware version. */ const auto hos_version = hos::GetVersion(); if (hos_version >= hos::Version_4_0_0) { /* 4.0.0 took memory away from applet and gave it to system, for the Standard and StandardForSystemDev profiles. */ g_memory_resource_limits[spl::MemoryArrangement_Standard][ResourceLimitGroup_System] += ExtraSystemMemorySize400; g_memory_resource_limits[spl::MemoryArrangement_Standard][ResourceLimitGroup_Applet] -= ExtraSystemMemorySize400; g_memory_resource_limits[spl::MemoryArrangement_StandardForSystemDev][ResourceLimitGroup_System] += ExtraSystemMemorySize400; g_memory_resource_limits[spl::MemoryArrangement_StandardForSystemDev][ResourceLimitGroup_Applet] -= ExtraSystemMemorySize400; } /* Determine system resource counts. */ { /* Get the total resource counts. */ s64 total_events, total_transfer_memories, total_sessions; R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_events), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_EventCountMax)); R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_transfer_memories), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_TransferMemoryCountMax)); R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_sessions), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_SessionCountMax)); /* Determine system counts. */ const s64 sys_events = total_events - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_EventCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_EventCountMax]); const s64 sys_transfer_memories = total_transfer_memories - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_TransferMemoryCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_TransferMemoryCountMax]); const s64 sys_sessions = total_sessions - (g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_SessionCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_SessionCountMax]); /* Check system counts. */ AMS_ABORT_UNLESS(sys_events >= 0); AMS_ABORT_UNLESS(sys_transfer_memories >= 0); AMS_ABORT_UNLESS(sys_sessions >= 0); /* Set system counts. */ g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_EventCountMax] = sys_events; g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_TransferMemoryCountMax] = sys_transfer_memories; g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_SessionCountMax] = sys_sessions; } /* Determine extra application threads. */ { /* Get total threads available. */ s64 total_threads; R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(std::addressof(total_threads), GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_ThreadCountMax)); /* Check that we have enough threads. */ const s64 required_threads = g_resource_limits[ResourceLimitGroup_System][svc::LimitableResource_ThreadCountMax] + g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_ThreadCountMax] + g_resource_limits[ResourceLimitGroup_Applet][svc::LimitableResource_ThreadCountMax]; AMS_ABORT_UNLESS(total_threads >= required_threads); /* Set the number of extra application threads. */ g_extra_application_threads_available = total_threads - required_threads; } /* Choose and initialize memory arrangement. */ const bool use_dynamic_memory_arrangement = (hos_version >= hos::Version_5_0_0); if (use_dynamic_memory_arrangement) { /* 6.0.0 retrieves memory limit information from the kernel, rather than using a hardcoded profile. */ g_memory_arrangement = spl::MemoryArrangement_Dynamic; /* Get total memory available. */ s64 total_memory = 0; R_ABORT_UNLESS(svc::GetResourceLimitLimitValue(&total_memory, GetResourceLimitHandle(ResourceLimitGroup_System), svc::LimitableResource_PhysicalMemoryMax)); /* Get and save application + applet memory. */ R_ABORT_UNLESS(svc::GetSystemInfo(std::addressof(g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Application]), svc::SystemInfoType_TotalPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Application)); R_ABORT_UNLESS(svc::GetSystemInfo(std::addressof(g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Applet]), svc::SystemInfoType_TotalPhysicalMemorySize, svc::InvalidHandle, svc::PhysicalMemorySystemInfo_Applet)); const s64 application_size = g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Application]; const s64 applet_size = g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_Applet]; const s64 reserved_non_system_size = (application_size + applet_size + ReservedMemorySize600); /* Ensure there's enough memory for the system region. */ AMS_ABORT_UNLESS(reserved_non_system_size < total_memory); g_memory_resource_limits[spl::MemoryArrangement_Dynamic][ResourceLimitGroup_System] = total_memory - reserved_non_system_size; } else { /* Older system versions retrieve memory arrangement from spl, and use hardcoded profiles. */ g_memory_arrangement = spl::GetMemoryArrangement(); /* Adjust memory limits for atmosphere. */ /* We take memory away from applet normally, but away from application on < 3.0.0 to avoid a rare hang on boot. */ const size_t extra_memory_size = ExtraSystemMemorySizeAtmosphere; const auto src_group = hos_version >= hos::Version_3_0_0 ? ResourceLimitGroup_Applet : ResourceLimitGroup_Application; for (size_t i = 0; i < spl::MemoryArrangement_Count; i++) { g_memory_resource_limits[i][ResourceLimitGroup_System] += extra_memory_size; g_memory_resource_limits[i][src_group] -= extra_memory_size; } /* If KTrace is enabled, account for that by subtracting the memory from the applet pool. */ if (IsKTraceEnabled()) { constexpr size_t KTraceBufferSize = 16_MB; for (size_t i = 0; i < spl::MemoryArrangement_Count; i++) { g_memory_resource_limits[i][ResourceLimitGroup_Applet] -= KTraceBufferSize; } } } /* Actually set resource limits. */ { std::scoped_lock lk(g_resource_limit_lock); for (size_t group = 0; group < ResourceLimitGroup_Count; group++) { R_ABORT_UNLESS(SetResourceLimitLimitValues(static_cast<ResourceLimitGroup>(group), g_memory_resource_limits[g_memory_arrangement][group])); } } return ResultSuccess(); } Result BoostSystemMemoryResourceLimit(u64 boost_size) { /* Don't allow all application memory to be taken away. */ R_UNLESS(boost_size <= g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_Application], pm::ResultInvalidSize()); const u64 new_app_size = g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_Application] - boost_size; { std::scoped_lock lk(g_resource_limit_lock); if (hos::GetVersion() >= hos::Version_5_0_0) { /* Starting in 5.0.0, PM does not allow for only one of the sets to fail. */ if (boost_size < g_system_memory_boost_size) { R_TRY(svc::SetUnsafeLimit(boost_size)); R_ABORT_UNLESS(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size)); } else { R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size)); R_ABORT_UNLESS(svc::SetUnsafeLimit(boost_size)); } } else { const u64 new_sys_size = g_memory_resource_limits[g_memory_arrangement][ResourceLimitGroup_System] + boost_size; if (boost_size < g_system_memory_boost_size) { R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_System, new_sys_size)); R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size)); } else { R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_Application, new_app_size)); R_TRY(SetMemoryResourceLimitLimitValue(ResourceLimitGroup_System, new_sys_size)); } } g_system_memory_boost_size = boost_size; } return ResultSuccess(); } Result BoostApplicationThreadResourceLimit() { std::scoped_lock lk(g_resource_limit_lock); /* Set new limit. */ const s64 new_thread_count = g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_ThreadCountMax] + g_extra_application_threads_available; R_TRY(svc::SetResourceLimitLimitValue(GetResourceLimitHandle(ResourceLimitGroup_Application), svc::LimitableResource_ThreadCountMax, new_thread_count)); /* Record that we did so. */ g_resource_limits[ResourceLimitGroup_Application][svc::LimitableResource_ThreadCountMax] = new_thread_count; g_extra_application_threads_available = 0; return ResultSuccess(); } os::NativeHandle GetResourceLimitHandle(ResourceLimitGroup group) { return g_resource_limit_handles[group]; } os::NativeHandle GetResourceLimitHandle(const ldr::ProgramInfo *info) { return GetResourceLimitHandle(GetResourceLimitGroup(info)); } void WaitResourceAvailable(const ldr::ProgramInfo *info) { if (GetResourceLimitGroup(info) == ResourceLimitGroup_Application) { WaitResourceAvailable(ResourceLimitGroup_Application); if (hos::GetVersion() >= hos::Version_5_0_0) { WaitApplicationMemoryAvailable(); } } } Result GetResourceLimitValues(s64 *out_cur, s64 *out_lim, ResourceLimitGroup group, svc::LimitableResource resource) { /* Do not allow out of bounds access. */ AMS_ABORT_UNLESS(group < ResourceLimitGroup_Count); AMS_ABORT_UNLESS(resource < svc::LimitableResource_Count); const auto reslimit_hnd = GetResourceLimitHandle(group); R_TRY(svc::GetResourceLimitCurrentValue(out_cur, reslimit_hnd, resource)); R_TRY(svc::GetResourceLimitLimitValue(out_lim, reslimit_hnd, resource)); return ResultSuccess(); } }