/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma once #include <vapours/common.hpp> #include <vapours/assert.hpp> namespace ams::util { namespace impl { template<size_t N> constexpr inline size_t Log2 = Log2<N / 2> + 1; template<> constexpr inline size_t Log2<1> = 0; } template <typename T> requires std::integral<T> class BitsOf { private: static constexpr ALWAYS_INLINE int GetLsbPos(T v) { return __builtin_ctzll(static_cast<u64>(v)); } T m_value; public: /* Note: GCC has a bug in constant-folding here. Workaround: wrap entire caller with constexpr. */ constexpr ALWAYS_INLINE BitsOf(T value = T(0u)) : m_value(value) { /* ... */ } constexpr ALWAYS_INLINE bool operator==(const BitsOf &other) const { return m_value == other.m_value; } constexpr ALWAYS_INLINE bool operator!=(const BitsOf &other) const { return m_value != other.m_value; } constexpr ALWAYS_INLINE int operator*() const { return GetLsbPos(m_value); } constexpr ALWAYS_INLINE BitsOf &operator++() { m_value &= ~(T(1u) << GetLsbPos(m_value)); return *this; } constexpr ALWAYS_INLINE BitsOf &operator++(int) { BitsOf ret(m_value); ++(*this); return ret; } constexpr ALWAYS_INLINE BitsOf begin() const { return *this; } constexpr ALWAYS_INLINE BitsOf end() const { return BitsOf(T(0u)); } }; template<typename T = u64, typename ...Args> requires std::integral<T> constexpr ALWAYS_INLINE T CombineBits(Args... args) { return (... | (T(1u) << args)); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T ResetLeastSignificantOneBit(T x) { return x & (x - 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T SetLeastSignificantZeroBit(T x) { return x | (x + 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T LeastSignificantOneBit(T x) { return x & ~(x - 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T LeastSignificantZeroBit(T x) { return ~x & (x + 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T ResetTrailingOnes(T x) { return x & (x + 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T SetTrailingZeros(T x) { return x | (x - 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T MaskTrailingZeros(T x) { return (~x) & (x - 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T MaskTrailingOnes(T x) { return ~((~x) | (x + 1)); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T MaskTrailingZerosAndLeastSignificantOneBit(T x) { return x ^ (x - 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T MaskTrailingOnesAndLeastSignificantZeroBit(T x) { return x ^ (x + 1); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE int PopCount(T x) { using U = typename std::make_unsigned<T>::type; U u = static_cast<U>(x); if (std::is_constant_evaluated()) { /* https://en.wikipedia.org/wiki/Hamming_weight */ constexpr U m1 = U(-1) / 0x03; constexpr U m2 = U(-1) / 0x05; constexpr U m4 = U(-1) / 0x11; u = static_cast<U>(u - ((u >> 1) & m1)); u = static_cast<U>((u & m2) + ((u >> 2) & m2)); u = static_cast<U>((u + (u >> 4)) & m4); for (size_t i = 0; i < impl::Log2<sizeof(T)>; ++i) { const size_t shift = (0x1 << i) * BITSIZEOF(u8); u += u >> shift; } return static_cast<int>(u & 0x7Fu); } else { if constexpr (std::is_same<U, unsigned long long>::value) { return __builtin_popcountll(u); } else if constexpr (std::is_same<U, unsigned long>::value) { return __builtin_popcountl(u); } else { static_assert(sizeof(U) <= sizeof(unsigned int)); return __builtin_popcount(static_cast<unsigned int>(u)); } } } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE int CountLeadingZeros(T x) { if (std::is_constant_evaluated()) { for (size_t i = 0; i < impl::Log2<BITSIZEOF(T)>; ++i) { const size_t shift = (0x1 << i); x |= x >> shift; } return PopCount(static_cast<T>(~x)); } else { using U = typename std::make_unsigned<T>::type; const U u = static_cast<U>(x); if (u != 0) { if constexpr (std::is_same<U, unsigned long long>::value) { return __builtin_clzll(u); } else if constexpr (std::is_same<U, unsigned long>::value) { return __builtin_clzl(u); } else if constexpr(std::is_same<U, unsigned int>::value) { return __builtin_clz(u); } else { static_assert(sizeof(U) < sizeof(unsigned int)); constexpr size_t BitDiff = BITSIZEOF(unsigned int) - BITSIZEOF(U); return __builtin_clz(static_cast<unsigned int>(u)) - BitDiff; } } else { return BITSIZEOF(U); } } } static_assert(CountLeadingZeros(~static_cast<u64>(0)) == 0); static_assert(CountLeadingZeros(static_cast<u64>(1) << 5) == BITSIZEOF(u64) - 1 - 5); static_assert(CountLeadingZeros(static_cast<u64>(0)) == BITSIZEOF(u64)); template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE int CountTrailingZeros(T x) { if (std::is_constant_evaluated()) { auto count = 0; for (size_t i = 0; i < BITSIZEOF(T) && (x & 1) == 0; ++i) { x >>= 1; ++count; } return count; } else { using U = typename std::make_unsigned<T>::type; const U u = static_cast<U>(x); if (u != 0) { if constexpr (std::is_same<U, unsigned long long>::value) { return __builtin_ctzll(u); } else if constexpr (std::is_same<U, unsigned long>::value) { return __builtin_ctzl(u); } else if constexpr(std::is_same<U, unsigned int>::value) { return __builtin_ctz(u); } else { static_assert(sizeof(U) < sizeof(unsigned int)); return __builtin_ctz(static_cast<unsigned int>(u)); } } else { return BITSIZEOF(U); } } } static_assert(CountTrailingZeros(~static_cast<u64>(0)) == 0); static_assert(CountTrailingZeros(static_cast<u64>(1) << 5) == 5); static_assert(CountTrailingZeros(static_cast<u64>(0)) == BITSIZEOF(u64)); template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE bool IsPowerOfTwo(T x) { return x > 0 && ResetLeastSignificantOneBit(x) == 0; } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T CeilingPowerOfTwo(T x) { AMS_ASSERT(x > 0); return T(1) << (BITSIZEOF(T) - CountLeadingZeros(T(x - 1))); } template<typename T> requires std::integral<T> constexpr ALWAYS_INLINE T FloorPowerOfTwo(T x) { AMS_ASSERT(x > 0); return T(1) << (BITSIZEOF(T) - CountLeadingZeros(x) - 1); } template<typename T, typename U> constexpr ALWAYS_INLINE T DivideUp(T v, U d) { using Unsigned = typename std::make_unsigned<U>::type; const Unsigned add = static_cast<Unsigned>(d) - 1; return static_cast<T>((v + add) / d); } template<typename T, T N, T D> constexpr ALWAYS_INLINE T ScaleByConstantFactor(const T V) { /* Multiplying and dividing by large numerator/denominator can cause error to be introduced. */ /* This algorithm multiples/divides in stages, so as to mitigate this (particularly with large denominator). */ /* Justification for the algorithm. */ /* Calculate: (V * N) / D */ /* = (Quot_V * D + Rem_V) * (Quot_N * D + Rem_N) / D */ /* = (D^2 * (Quot_V * Quot_N) + D * (Quot_V * Rem_N + Rem_V * Quot_N) + Rem_V * Rem_N) / D */ /* = (D * Quot_V * Quot_N) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + ((Rem_V * Rem_N) / D) */ /* Calculate quotients/remainders. */ const T Quot_V = V / D; const T Rem_V = V % D; constexpr T Quot_N = N / D; constexpr T Rem_N = N % D; /* Calculate the remainder multiplication, rounding up. */ const T rem_mult = ((Rem_V * Rem_N) + (D - 1)) / D; /* Calculate results. */ return (D * Quot_N * Quot_V) + (Quot_V * Rem_N) + (Rem_V * Quot_N) + rem_mult; } }