/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "dmnt2_debug_log.hpp" #include "dmnt2_gdb_server_impl.hpp" namespace ams::dmnt { namespace { constexpr const u32 SdkBreakPoint = 0xE7FFFFFF; constexpr const u32 SdkBreakPointMask = 0xFFFFFFFF; constexpr const u32 ArmBreakPoint = 0xE7FFDEFE; constexpr const u32 ArmBreakPointMask = 0xFFFFFFFF; constexpr const u32 A64BreakPoint = 0xD4200000; constexpr const u32 A64BreakPointMask = 0xFFE0001F; constexpr const u32 A64Halt = 0xD4400000; constexpr const u32 A64HaltMask = 0xFFE0001F; constexpr const u32 A32BreakPoint = 0xE1200070; constexpr const u32 A32BreakPointMask = 0xFFF000F0; constexpr const u32 T16BreakPoint = 0x0000BE00; constexpr const u32 T16BreakPointMask = 0x0000FF00; constexpr const char TargetXmlAarch64[] = "l" "" "" "aarch64" "" "" ""; constexpr const char Aarch64CoreXml[] = "l\n" "\n" "\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\n" "\t\t\n" "\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" ""; constexpr const char Aarch64FpuXml[] = "l\n" "\n" "\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" ""; constexpr const char TargetXmlAarch32[] = "l" "" "" "" "" ""; constexpr const char ArmCoreXml[] = "l\n" "\n" "\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\n"; constexpr const char ArmVfpXml[] = "l\n" "\n" "\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\t\n" "\n"; constexpr const char * const MemoryStateNames[svc::MemoryState_Coverage + 1] = { "----- Free -----", /* svc::MemoryState_Free */ "Io ", /* svc::MemoryState_Io */ "Static ", /* svc::MemoryState_Static */ "Code ", /* svc::MemoryState_Code */ "CodeData ", /* svc::MemoryState_CodeData */ "Normal ", /* svc::MemoryState_Normal */ "Shared ", /* svc::MemoryState_Shared */ "Alias ", /* svc::MemoryState_Alias */ "AliasCode ", /* svc::MemoryState_AliasCode */ "AliasCodeData ", /* svc::MemoryState_AliasCodeData */ "Ipc ", /* svc::MemoryState_Ipc */ "Stack ", /* svc::MemoryState_Stack */ "ThreadLocal ", /* svc::MemoryState_ThreadLocal */ "Transfered ", /* svc::MemoryState_Transfered */ "SharedTransfered", /* svc::MemoryState_SharedTransfered */ "SharedCode ", /* svc::MemoryState_SharedCode */ "Inaccessible ", /* svc::MemoryState_Inaccessible */ "NonSecureIpc ", /* svc::MemoryState_NonSecureIpc */ "NonDeviceIpc ", /* svc::MemoryState_NonDeviceIpc */ "Kernel ", /* svc::MemoryState_Kernel */ "GeneratedCode ", /* svc::MemoryState_GeneratedCode */ "CodeOut ", /* svc::MemoryState_CodeOut */ "Coverage ", /* svc::MemoryState_Coverage */ }; constexpr const char *GetMemoryStateName(svc::MemoryState state) { if (static_cast(state) < util::size(MemoryStateNames)) { return MemoryStateNames[static_cast(state)]; } else { return "Unknown "; } } constexpr const char *GetMemoryPermissionString(const svc::MemoryInfo &info) { if (info.state == svc::MemoryState_Free) { return " "; } else { switch (info.permission) { case svc::MemoryPermission_ReadExecute: return "r-x"; case svc::MemoryPermission_Read: return "r--"; case svc::MemoryPermission_ReadWrite: return "rw-"; default: return "---"; } } } bool ParsePrefix(char *&packet, const char *prefix) { const auto len = std::strlen(prefix); if (std::strncmp(packet, prefix, len) == 0) { packet += len; return true; } else { return false; } } void SetReplyOk(char *reply) { std::strcpy(reply, "OK"); } void SetReplyError(char *reply, const char *err) { AMS_DMNT2_GDB_LOG_ERROR("Reply Error: %s\n", err); std::strcpy(reply, err); } void SetReply(char *reply, const char *fmt, ...) __attribute__((format(printf, 2, 3))); void SetReply(char *reply, const char *fmt, ...) { std::va_list vl; va_start(vl, fmt); util::VSNPrintf(reply, GdbPacketBufferSize, fmt, vl); va_end(vl); } void AppendReply(char *reply, const char *fmt, ...) __attribute__((format(printf, 2, 3))); void AppendReply(char *reply, const char *fmt, ...) { const auto len = std::strlen(reply); std::va_list vl; va_start(vl, fmt); util::VSNPrintf(reply + len, GdbPacketBufferSize - len, fmt, vl); va_end(vl); } constexpr int DecodeHex(char c) { if ('a' <= c && c <= 'f') { return 10 + (c - 'a'); } else if ('A' <= c && c <= 'F') { return 10 + (c - 'A'); } else if ('0' <= c && c <= '9') { return 0 + (c - '0'); } else { return -1; } } constexpr u64 DecodeHex(const char *s) { u64 value = 0; while (true) { const char c = *(s++); if (int v = DecodeHex(c); v >= 0) { value <<= 4; value |= v & 0xF; } else { break; } } return value; } void MemoryToHex(char *dst, const void *mem, size_t size) { const u8 *mem_u8 = static_cast(mem); while (size-- > 0) { const u8 v = *(mem_u8++); *(dst++) = "0123456789abcdef"[v >> 4]; *(dst++) = "0123456789abcdef"[v & 0xF]; } *dst = 0; } void HexToMemory(void *dst, const char *src, size_t size) { u8 *dst_u8 = static_cast(dst); for (size_t i = 0; i < size; ++i) { u8 v = DecodeHex(*(src++)) << 4; v |= DecodeHex(*(src++)) & 0xF; *(dst_u8++) = v; } } void ParseOffsetLength(const char *packet, u32 &offset, u32 &length) { /* Default to zero. */ offset = 0; length = 0; bool parsed_offset = false; while (*packet) { const char c = *(packet++); if (c == ',') { parsed_offset = true; } else if (auto hex = DecodeHex(c); hex >= 0) { if (parsed_offset) { length <<= 4; length |= hex; } else { offset <<= 4; offset |= hex; } } } AMS_DMNT2_GDB_LOG_DEBUG("Offset/Length %x/%x\n", offset, length); } s32 FindThreadIdIndex(u64 *thread_ids, s32 num_threads, u64 thread_id) { for (auto i = 0; i < num_threads; ++i) { if (thread_ids[i] == thread_id) { return i; } } return 0; } void SetGdbRegister32(char *dst, u32 value) { if (value != 0) { AppendReply(dst, "%08x", util::ConvertToBigEndian(value)); } else { AppendReply(dst, "0*\"00"); } } void SetGdbRegister64(char *dst, u64 value) { if (value != 0) { AppendReply(dst, "%016lx", util::ConvertToBigEndian(value)); } else { AppendReply(dst, "0*,"); } } void SetGdbRegister128(char *dst, u128 value) { if (value != 0) { AppendReply(dst, "%016lx%016lx", util::ConvertToBigEndian(static_cast(value >> 0)), util::ConvertToBigEndian(static_cast(value >> BITSIZEOF(u64)))); } else { AppendReply(dst, "0*<"); } } void SetGdbRegisterPacket(char *dst, const svc::ThreadContext &thread_context, bool is_64_bit) { /* Clear packet. */ dst[0] = 0; if (is_64_bit) { /* Copy general purpose registers. */ for (size_t i = 0; i < util::size(thread_context.r); ++i) { SetGdbRegister64(dst, thread_context.r[i]); } /* Copy special registers. */ SetGdbRegister64(dst, thread_context.fp); SetGdbRegister64(dst, thread_context.lr); SetGdbRegister64(dst, thread_context.sp); SetGdbRegister64(dst, thread_context.pc); SetGdbRegister32(dst, thread_context.pstate); /* Copy FPU registers. */ for (size_t i = 0; i < util::size(thread_context.v); ++i) { SetGdbRegister128(dst, thread_context.v[i]); } SetGdbRegister32(dst, thread_context.fpsr); SetGdbRegister32(dst, thread_context.fpcr); } else { /* Copy general purpose registers. */ for (size_t i = 0; i < 15; ++i) { SetGdbRegister32(dst, thread_context.r[i]); } /* Copy special registers. */ SetGdbRegister32(dst, thread_context.pc); SetGdbRegister32(dst, thread_context.pstate); /* Copy FPU registers. */ for (size_t i = 0; i < util::size(thread_context.v) / 2; ++i) { SetGdbRegister128(dst, thread_context.v[i]); } const u32 fpscr = (thread_context.fpsr & 0xF80000FF) | (thread_context.fpcr & 0x07FFFF00); SetGdbRegister32(dst, fpscr); } } void SetGdbRegisterPacket(char *dst, const svc::ThreadContext &thread_context, u64 reg_num, bool is_64_bit) { /* Clear packet. */ dst[0] = 0; union { u32 v32; u64 v64; u128 v128; } v; size_t reg_size = 0; if (is_64_bit) { if (reg_num < 29) { v.v64 = thread_context.r[reg_num]; reg_size = sizeof(u64); } else if (reg_num == 29) { v.v64 = thread_context.fp; reg_size = sizeof(u64); } else if (reg_num == 30) { v.v64 = thread_context.lr; reg_size = sizeof(u64); } else if (reg_num == 31) { v.v64 = thread_context.sp; reg_size = sizeof(u64); } else if (reg_num == 32) { v.v64 = thread_context.pc; reg_size = sizeof(u64); } else if (reg_num == 33) { v.v32 = thread_context.pstate; reg_size = sizeof(u32); } else if (reg_num < 66) { v.v128 = thread_context.v[reg_num - 34]; reg_size = sizeof(u128); } else if (reg_num == 66) { v.v32 = thread_context.fpsr; reg_size = sizeof(u32); } else if (reg_num == 67) { v.v32 = thread_context.fpcr; reg_size = sizeof(u32); } } else { if (reg_num < 15) { v.v32 = thread_context.r[reg_num]; reg_size = sizeof(u32); } else if (reg_num == 15) { v.v32 = thread_context.pc; reg_size = sizeof(u32); } else if (reg_num == 25) { v.v32 = thread_context.pstate; reg_size = sizeof(u32); } else if (26 <= reg_num && reg_num < 58) { const union { u64 v64[2]; u128 v128; } fpu_reg = { .v128 = thread_context.v[(reg_num - 26) / 2] }; v.v64 = fpu_reg.v64[(reg_num - 26) % 2]; reg_size = sizeof(u64); } else if (reg_num == 58) { const u32 fpscr = (thread_context.fpsr & 0xF80000FF) | (thread_context.fpcr & 0x07FFFF00); v.v32 = fpscr; reg_size = sizeof(u32); } } switch (reg_size) { case sizeof(u32): SetGdbRegister32 (dst, v.v32 ); break; case sizeof(u64): SetGdbRegister64 (dst, v.v64 ); break; case sizeof(u128): SetGdbRegister128(dst, v.v128); break; AMS_UNREACHABLE_DEFAULT_CASE(); } } u64 Aarch32RegisterToAarch64Register(u64 reg_num) { if (reg_num < 15) { return reg_num; } else if (reg_num == 15) { return 32; } else if (reg_num == 25) { return 33; } else if (26 <= reg_num && reg_num <= 57) { return 34 + (reg_num - 26); } else if (reg_num == 58) { return 66; } else { AMS_ABORT("Unknown register number %lu\n", reg_num); } } template requires std::unsigned_integral util::optional ParseGdbRegister(const char *&src) { union { IntType v; u8 bytes[sizeof(v)]; } reg; for (size_t i = 0; i < util::size(reg.bytes); ++i) { const auto high = DecodeHex(*(src++)); const auto low = DecodeHex(*(src++)); if (high < 0 || low < 0) { return util::nullopt; } reg.bytes[i] = (high << 4) | low; } return reg.v; } ALWAYS_INLINE util::optional ParseGdbRegister32(const char *&src) { return ParseGdbRegister(src); } ALWAYS_INLINE util::optional ParseGdbRegister64(const char *&src) { return ParseGdbRegister(src); } ALWAYS_INLINE util::optional ParseGdbRegister128(const char *&src) { return ParseGdbRegister(src); } void ParseGdbRegisterPacket(svc::ThreadContext &thread_context, const char *src, bool is_64_bit) { if (is_64_bit) { /* Copy general purpose registers. */ for (size_t i = 0; i < util::size(thread_context.r); ++i) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.r[i] = *v; } else { return; } } /* Copy special registers. */ if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.fp = *v; } else { return; } if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.lr = *v; } else { return; } if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.sp = *v; } else { return; } if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.pc = *v; } else { return; } if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pstate = *v; } else { return; } /* Copy FPU registers. */ for (size_t i = 0; i < util::size(thread_context.v); ++i) { if (const auto v = ParseGdbRegister128(src); v.has_value()) { thread_context.v[i] = *v; } else { return; } } if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpsr = *v; } else { return; } if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpcr = *v; } else { return; } } else { /* Copy general purpose registers. */ for (size_t i = 0; i < 15; ++i) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.r[i] = *v; } else { return; } } /* Copy special registers. */ if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pc = *v; } else { return; } if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pstate = *v; } else { return; } /* Copy FPU registers. */ for (size_t i = 0; i < util::size(thread_context.v) / 2; ++i) { if (const auto v = ParseGdbRegister128(src); v.has_value()) { thread_context.v[i] = *v; } else { return; } } if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpsr = *v & 0xF80000FF; thread_context.fpcr = *v & 0x07FFFF00; } else { return; } } } void ParseGdbRegisterPacket(svc::ThreadContext &thread_context, const char *src, u64 reg_num, bool is_64_bit) { if (is_64_bit) { if (reg_num < 29) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.r[reg_num] = *v; } } else if (reg_num == 29) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.fp = *v; } } else if (reg_num == 30) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.lr = *v; } } else if (reg_num == 31) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.sp = *v; } } else if (reg_num == 32) { if (const auto v = ParseGdbRegister64(src); v.has_value()) { thread_context.pc = *v; } } else if (reg_num == 33) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pstate = *v; } } else if (reg_num < 66) { if (const auto v = ParseGdbRegister128(src); v.has_value()) { thread_context.v[reg_num - 34] = *v; } } else if (reg_num == 66) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpsr = *v; } } else if (reg_num == 67) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpcr = *v; } } } else { if (reg_num < 15) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.r[reg_num] = *v; } } else if (reg_num == 15) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pc = *v; } } else if (reg_num == 25) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.pstate = *v; } } else if (26 <= reg_num && reg_num < 58) { union { u64 v64[2]; u128 v128; } fpu_reg = { .v128 = thread_context.v[(reg_num - 26) / 2] }; if (const auto v = ParseGdbRegister64(src); v.has_value()) { fpu_reg.v64[(reg_num - 26) % 2] = *v; thread_context.v[(reg_num - 26) / 2] = fpu_reg.v128; } } else if (reg_num == 58) { if (const auto v = ParseGdbRegister32(src); v.has_value()) { thread_context.fpsr = *v & 0xF80000FF; thread_context.fpcr = *v & 0x07FFFF00; } } } } u32 RegisterToContextFlags(u64 reg_num, bool is_64_bit) { /* Convert register number. */ if (!is_64_bit) { reg_num = Aarch32RegisterToAarch64Register(reg_num); } /* Get flags. */ u32 flags = 0; if (reg_num < 29) { flags = svc::ThreadContextFlag_General; } else if (reg_num < 34) { flags = svc::ThreadContextFlag_Control; } else if (reg_num < 66) { flags = svc::ThreadContextFlag_Fpu; } else if (reg_num == 66) { flags = svc::ThreadContextFlag_FpuControl; } return flags; } constinit os::SdkMutex g_annex_buffer_lock; constinit char g_annex_buffer[2 * GdbPacketBufferSize]; enum AnnexBufferContents { AnnexBufferContents_Invalid, AnnexBufferContents_Processes, AnnexBufferContents_Threads, AnnexBufferContents_Libraries, }; constinit AnnexBufferContents g_annex_buffer_contents = AnnexBufferContents_Invalid; void GetAnnexBufferContents(char *dst, u32 offset, u32 length) { const u32 annex_len = std::strlen(g_annex_buffer); if (offset <= annex_len) { if (offset + length < annex_len) { dst[0] = 'm'; std::memcpy(dst + 1, g_annex_buffer + offset, length); dst[1 + length] = 0; } else { const auto size = annex_len - offset; dst[0] = 'l'; std::memcpy(dst + 1, g_annex_buffer + offset, size); dst[1 + size] = 0; } } else { dst[0] = '1'; dst[1] = 0; } } constinit os::SdkMutex g_event_request_lock; constinit os::SdkMutex g_event_lock; constinit os::SdkConditionVariable g_event_request_cv; constinit os::SdkConditionVariable g_event_done_cv; } GdbServerImpl::GdbServerImpl(int socket, void *stack, size_t stack_size) : m_socket(socket), m_session(socket), m_packet_io(), m_state(State::Initial), m_debug_process(), m_event(os::EventClearMode_AutoClear) { /* Create and start the events thread. */ R_ABORT_UNLESS(os::CreateThread(std::addressof(m_events_thread), DebugEventsThreadEntry, this, stack, stack_size, os::HighestThreadPriority - 1)); os::StartThread(std::addressof(m_events_thread)); /* Set our state. */ m_state = State::Running; } GdbServerImpl::~GdbServerImpl() { /* Set ourselves as killed. */ m_killed = true; /* Signal to our events thread. */ { std::scoped_lock lk(g_event_request_lock); g_event_request_cv.Signal(); } /* Signal our event. */ m_event.Signal(); /* Wait for our thread to finish. */ os::WaitThread(std::addressof(m_events_thread)); os::DestroyThread(std::addressof(m_events_thread)); /* Clear our state. */ m_state = State::Destroyed; /* Detach. */ if (this->HasDebugProcess()) { m_debug_process.Detach(); } } void GdbServerImpl::DebugEventsThread() { /* Process events. */ { std::scoped_lock lk(g_event_lock); /* Loop while we're not killed. */ while (!m_killed) { /* Wait for a request to come in. */ g_event_request_cv.Wait(g_event_lock); /* Check that we're not killed now. */ if (m_killed) { break; } /* Detach. */ m_debug_process.Detach(); /* Check if we need to start the process. */ const bool start_process = m_process_id == m_wait_process_id; { /* Clear our wait process id. */ ON_SCOPE_EXIT { if (start_process) { m_wait_process_id = os::InvalidProcessId; } }; /* If we have a process id, attach. */ if (R_FAILED(m_debug_process.Attach(m_process_id, m_process_id == m_wait_process_id))) { AMS_DMNT2_GDB_LOG_DEBUG("Failed to attach to %016lx\n", m_process_id.value); g_event_done_cv.Signal(); continue; } } /* Set our process id. */ m_process_id = m_debug_process.GetProcessId(); /* Signal that we're done attaching. */ g_event_done_cv.Signal(); /* Process debug events without the lock held. */ { g_event_lock.Unlock(); this->ProcessDebugEvents(); g_event_lock.Lock(); } /* Clear our process id and detach. */ m_process_id = os::InvalidProcessId; m_debug_process.Detach(); } } /* Set our state. */ m_state = State::Exited; } void GdbServerImpl::ProcessDebugEvents() { AMS_DMNT2_GDB_LOG_DEBUG("Processing debug events for %016lx\n", m_process_id.value); u64 new_hb_nro_addr = 0; u32 new_hb_nro_insn = 0; while (true) { /* Wait for an event to come in. */ const Result wait_result = [&] ALWAYS_INLINE_LAMBDA { std::scoped_lock lk(g_event_lock); s32 dummy = -1; svc::Handle handle = m_debug_process.GetHandle(); return svc::WaitSynchronization(std::addressof(dummy), std::addressof(handle), 1, TimeSpan::FromMilliSeconds(20).GetNanoSeconds()); }(); /* Check if we're killed. */ if (m_killed || !m_debug_process.IsValid()) { break; } /* If we didn't get an event, try again. */ if (svc::ResultTimedOut::Includes(wait_result)) { continue; } /* Try to get the event. */ svc::DebugEventInfo d; if (R_FAILED(m_debug_process.GetProcessDebugEvent(std::addressof(d)))) { continue; } /* Process the event. */ bool reply = false; GdbSignal signal; char send_buffer[GdbPacketBufferSize]; u64 thread_id = d.thread_id; m_debug_process.ClearStep(); send_buffer[0] = 0; switch (d.type) { case svc::DebugEvent_Exception: { switch (d.info.exception.type) { case svc::DebugException_BreakPoint: { signal = GdbSignal_BreakpointTrap; const uintptr_t address = d.info.exception.address; const bool is_instr = d.info.exception.specific.break_point.type == svc::BreakPointType_HardwareInstruction; AMS_DMNT2_GDB_LOG_DEBUG("BreakPoint %lx, addr=%lx, type=%s\n", thread_id, address, is_instr ? "Instr" : "Data"); if (is_instr) { SetReply(send_buffer, "T%02Xthread:p%lx.%lx;hwbreak:;", static_cast(signal), m_process_id.value, thread_id); } else { bool read = false, write = false; const char *type = "watch"; if (R_SUCCEEDED(m_debug_process.GetWatchPointInfo(address, read, write))) { if (read && write) { type = "awatch"; } else if (read) { type = "rwatch"; } } else { AMS_DMNT2_GDB_LOG_DEBUG("GetWatchPointInfo FAIL %lx, addr=%lx, type=%s\n", thread_id, address, is_instr ? "Instr" : "Data"); } SetReply(send_buffer, "T%02Xthread:p%lx.%lx;%s:%lx;", static_cast(signal), m_process_id.value, thread_id, type, address); } reply = true; } break; case svc::DebugException_UserBreak: { const uintptr_t address = d.info.exception.address; const auto &info = d.info.exception.specific.user_break; AMS_DMNT2_GDB_LOG_DEBUG("UserBreak %lx, addr=%lx, reason=%x, data=0x%lx, size=0x%lx\n", thread_id, address, info.break_reason, info.address, info.size); /* Check reason. */ /* TODO: libnx/Nintendo provide addresses in different ways, but we could optimize to avoid iterating all memory repeatedly. */ if ((info.break_reason & svc::BreakReason_NotificationOnlyFlag) != 0) { const auto reason = info.break_reason & ~svc::BreakReason_NotificationOnlyFlag; if (reason == svc::BreakReason_PostLoadDll || reason == svc::BreakReason_PostUnloadDll) { /* Re-collect the process's modules. */ m_debug_process.CollectModules(); } if (m_debug_process.GetOverrideStatus().IsHbl() && reason == svc::BreakReason_PostLoadDll) { if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_hb_nro_insn), info.address, sizeof(new_hb_nro_insn)))) { const u32 break_insn = SdkBreakPoint; if (R_SUCCEEDED(m_debug_process.WriteMemory(std::addressof(break_insn), info.address, sizeof(break_insn)))) { AMS_DMNT2_GDB_LOG_DEBUG("Set automatic break on new homebrew NRO (%lx, %lx)\n", info.address, info.size); new_hb_nro_addr = info.address; } else { AMS_DMNT2_GDB_LOG_DEBUG("Failed to set automatic break on new homebrew NRO (%lx, %lx)\n", info.address, info.size); } } else { AMS_DMNT2_GDB_LOG_DEBUG("Failed to read first insn on new homebrew NRO (%lx, %lx)\n", info.address, info.size); } } /* This was just a notification, so we should continue. */ m_debug_process.Continue(); continue; } /* Check if we should automatically continue. */ svc::ThreadContext ctx; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) { u32 insn = 0; if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(insn), ctx.pc, sizeof(insn)))) { constexpr u32 Aarch64SvcBreakValue = 0xD4000001 | (svc::SvcId_Break << 5); constexpr u32 Aarch32SvcBreakValue = 0xEF000000 | (svc::SvcId_Break); bool is_svc_break = m_debug_process.Is64Bit() ? (insn == Aarch64SvcBreakValue) : (insn == Aarch32SvcBreakValue); if (!is_svc_break) { AMS_DMNT2_GDB_LOG_ERROR("UserBreak from non-SvcBreak (%08x)\n", insn); m_debug_process.Continue(); continue; } } } signal = GdbSignal_BreakpointTrap; } break; case svc::DebugException_DebuggerBreak: { signal = GdbSignal_Interrupt; thread_id = m_debug_process.GetPreferredDebuggerBreakThreadId(); svc::ThreadContext ctx; if (thread_id == 0 || thread_id == static_cast(-1) || R_FAILED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) { thread_id = m_debug_process.GetLastThreadId(); } AMS_DMNT2_GDB_LOG_DEBUG("DebuggerBreak %lx, last=%lx\n", thread_id, m_debug_process.GetLastThreadId()); m_debug_process.SetLastThreadId(thread_id); m_debug_process.SetThreadIdOverride(thread_id); } break; case svc::DebugException_UndefinedInstruction: { signal = GdbSignal_IllegalInstruction; uintptr_t address = d.info.exception.address; const u32 insn = d.info.exception.specific.undefined_instruction.insn; u32 new_insn = 0; bool is_new_hb_nro = false; svc::ThreadContext ctx; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) { bool insn_changed = false; if (ctx.pstate & 0x20) { /* Thumb mode. */ address &= ~1; if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_insn), address, 2))) { switch ((new_insn >> 11) & 0x1F) { case 0x1D: case 0x1E: case 0x1F: { if (R_SUCCEEDED(m_debug_process.ReadMemory(reinterpret_cast(std::addressof(new_insn)) + 2, address + 2, 2))) { insn_changed = (new_insn != insn); } } break; default: insn_changed = (new_insn != insn); break; } if ((insn & T16BreakPointMask) == T16BreakPoint) { signal = GdbSignal_BreakpointTrap; } } } else { /* Non-thumb. */ if (R_SUCCEEDED(m_debug_process.ReadMemory(std::addressof(new_insn), address, sizeof(new_insn)))) { insn_changed = (new_insn != insn); } if (((insn & SdkBreakPointMask) == SdkBreakPoint) || ((insn & ArmBreakPointMask) == ArmBreakPoint) || ((insn & A64BreakPointMask) == A64BreakPoint) || ((insn & A32BreakPointMask) == A32BreakPoint) || ((insn & A64HaltMask) == A64Halt)) { signal = GdbSignal_BreakpointTrap; } if (m_debug_process.GetOverrideStatus().IsHbl() && address == new_hb_nro_addr && insn == SdkBreakPoint) { if (R_SUCCEEDED(m_debug_process.WriteMemory(std::addressof(new_hb_nro_insn), new_hb_nro_addr, sizeof(new_hb_nro_insn)))) { AMS_DMNT2_GDB_LOG_DEBUG("Did automatic break on new homebrew NRO (%lx)\n", address); new_hb_nro_addr = 0; new_hb_nro_insn = 0; is_new_hb_nro = true; } else { AMS_DMNT2_GDB_LOG_ERROR("Failed to restore instruction for new homebrew NRO (%lx)!\n", address); } } } if (insn_changed) { AMS_DMNT2_GDB_LOG_DEBUG("Instruction Changed %lx, address=%p, insn=%08x, new_insn=%08x\n", thread_id, reinterpret_cast(address), insn, new_insn); } } if (signal == GdbSignal_IllegalInstruction) { AMS_DMNT2_GDB_LOG_DEBUG("Undefined Instruction %lx, address=%p, insn=%08x\n", thread_id, reinterpret_cast(address), insn); } else if (signal == GdbSignal_BreakpointTrap && ((insn & SdkBreakPointMask) != SdkBreakPoint)) { AMS_DMNT2_GDB_LOG_DEBUG("Non-SDK BreakPoint %lx, address=%p, insn=%08x\n", thread_id, reinterpret_cast(address), insn); } if (signal == GdbSignal_BreakpointTrap && !is_new_hb_nro) { SetReply(send_buffer, "T%02Xthread:p%lx.%lx;swbreak:;", static_cast(signal), m_process_id.value, thread_id); reply = true; } m_debug_process.ClearStep(); } break; default: AMS_DMNT2_GDB_LOG_DEBUG("Unhandled Exception %u %lx\n", static_cast(d.info.exception.type), thread_id); signal = GdbSignal_SegmentationFault; break; } if (!reply) { SetReply(send_buffer, "T%02Xthread:p%lx.%lx;", static_cast(signal), m_process_id.value, thread_id); reply = true; } m_debug_process.SetLastThreadId(thread_id); m_debug_process.SetLastSignal(signal); } break; case svc::DebugEvent_CreateThread: { AMS_DMNT2_GDB_LOG_DEBUG("CreateThread %lx\n", thread_id); if (m_debug_process.IsValid()) { m_debug_process.Continue(); } else { SetReply(send_buffer, "W00"); reply = true; } } break; case svc::DebugEvent_ExitThread: { AMS_DMNT2_GDB_LOG_DEBUG("ExitThread %lx\n", thread_id); if (m_debug_process.IsValid()) { m_debug_process.Continue(); } else { SetReply(send_buffer, "W00"); reply = true; } } break; case svc::DebugEvent_ExitProcess: { m_killed = true; AMS_DMNT2_GDB_LOG_DEBUG("ExitProcess\n"); if (d.info.exit_process.reason == svc::ProcessExitReason_ExitProcess) { SetReply(send_buffer, "W00"); } else { SetReply(send_buffer, "X%02X", GdbSignal_Killed); } m_debug_process.Detach(); reply = true; } break; default: AMS_DMNT2_GDB_LOG_DEBUG("Unhandled ProcessEvent %u %lx\n", static_cast(d.type), thread_id); m_debug_process.Continue(); break; } if (reply) { bool do_break; this->SendPacket(std::addressof(do_break), send_buffer); if (do_break) { m_debug_process.Break(); } } } } void GdbServerImpl::SetStopReplyPacket(GdbSignal signal) { /* Set the signal. */ SetReply(m_reply_packet, "T%02X", static_cast(signal)); /* Get the last thread id. */ const u64 thread_id = m_debug_process.GetLastThreadId(); /* Get the thread context. */ svc::ThreadContext thread_context = {}; m_debug_process.GetThreadContext(std::addressof(thread_context), thread_id, svc::ThreadContextFlag_General | svc::ThreadContextFlag_Control); /* Add important registers. */ /* TODO: aarch32 */ { if (thread_context.fp != 0) { AppendReply(m_reply_packet, "1d:%016lx", util::ConvertToBigEndian(thread_context.fp)); } else { AppendReply(m_reply_packet, "1d:0*,"); } if (thread_context.sp != 0) { AppendReply(m_reply_packet, ";1f:%016lx", util::ConvertToBigEndian(thread_context.sp)); } else { AppendReply(m_reply_packet, ";1f:0*,"); } if (thread_context.pc != 0) { AppendReply(m_reply_packet, ";20:%016lx", util::ConvertToBigEndian(thread_context.pc)); } else { AppendReply(m_reply_packet, ";20:0*,"); } } /* Add the thread id. */ AppendReply(m_reply_packet, ";thread:p%lx.%lx", m_process_id.value, thread_id); /* Add the thread core. */ { u32 core = 0; m_debug_process.GetThreadCurrentCore(std::addressof(core), thread_id); AppendReply(m_reply_packet, ";core:%u;", core); } } void GdbServerImpl::LoopProcess() { /* Process packets. */ while (m_session.IsValid()) { /* Receive a packet. */ bool do_break = false; char recv_buf[GdbPacketBufferSize]; char *packet = this->ReceivePacket(std::addressof(do_break), recv_buf, sizeof(recv_buf)); if (!do_break && packet != nullptr) { /* Process the packet. */ char reply_buffer[GdbPacketBufferSize]; this->ProcessPacket(packet, reply_buffer); /* Send packet. */ this->SendPacket(std::addressof(do_break), reply_buffer); } /* If we should, break the process. */ if (do_break) { m_debug_process.Break(); } } } void GdbServerImpl::ProcessPacket(char *receive, char *reply) { /* Set our fields. */ m_receive_packet = receive; m_reply_packet = reply; /* Log the packet we're processing. */ AMS_DMNT2_GDB_LOG_DEBUG("Receive: %s\n", m_receive_packet); /* Clear our reply packet. */ m_reply_packet[0] = 0; /* Handle the received packet. */ switch (m_receive_packet[0]) { case 'D': this->D(); break; case 'G': this->G(); break; case 'H': this->H(); break; case 'M': this->M(); break; case 'P': this->P(); break; case 'Q': this->Q(); break; case 'T': this->T(); break; case 'Z': this->Z(); break; case 'c': this->c(); break; case 'k': this->k(); break; case 'g': if (!this->g()) { m_killed = true; } break; case 'm': this->m(); break; case 'p': this->p(); break; case 'v': this->v(); break; case 'q': this->q(); break; case 'z': this->z(); break; case '!': SetReplyOk(m_reply_packet); break; case '?': this->QuestionMark(); break; default: AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented: %s\n", m_receive_packet); break; } } void GdbServerImpl::D() { m_debug_process.Detach(); SetReplyOk(m_reply_packet); } void GdbServerImpl::G() { /* Get thread id. */ u32 thread_id = m_debug_process.GetThreadIdOverride(); if (thread_id == 0 || thread_id == static_cast(-1)) { thread_id = m_debug_process.GetLastThreadId(); } /* Get thread context. */ svc::ThreadContext ctx; if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_All))) { SetReplyError(m_reply_packet, "E01"); return; } /* Update the thread context. */ ParseGdbRegisterPacket(ctx, m_receive_packet, m_debug_process.Is64Bit()); /* Set the thread context. */ if (R_SUCCEEDED(m_debug_process.SetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_All))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::H() { if (this->HasDebugProcess()) { if (ParsePrefix(m_receive_packet, "Hg") || ParsePrefix(m_receive_packet, "HG")) { this->Hg(); } else { SetReplyError(m_reply_packet, "E01"); } } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::Hg() { bool success = false; s64 thread_id; if (const char *dot = std::strchr(m_receive_packet, '.'); dot != nullptr) { thread_id = std::strcmp(dot + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(dot + 1)); AMS_DMNT2_GDB_LOG_DEBUG("Set thread id = %lx\n", thread_id); u64 thread_ids[DebugProcess::ThreadCountMax]; s32 num_threads; if (R_SUCCEEDED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) { if (thread_id == 0) { thread_id = thread_ids[0]; } for (auto i = 0; i < num_threads; ++i) { if (thread_id == -1 || static_cast(thread_id) == thread_ids[i]) { svc::ThreadContext context; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(context), thread_ids[i], svc::ThreadContextFlag_Control))) { success = true; if (thread_id != -1) { m_debug_process.SetThreadIdOverride(thread_ids[i]); } } } } } } if (success) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::M() { ++m_receive_packet; /* Validate format. */ char *comma = std::strchr(m_receive_packet, ','); if (comma == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } *comma = 0; char *colon = std::strchr(comma + 1, ':'); if (colon == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } *colon = 0; /* Parse address/length. */ const u64 address = DecodeHex(m_receive_packet); const u64 length = DecodeHex(comma + 1); if (length >= sizeof(m_buffer)) { SetReplyError(m_reply_packet, "E01"); return; } /* Decode the memory. */ HexToMemory(m_buffer, colon + 1, length); /* Write the memory. */ if (R_SUCCEEDED(m_debug_process.WriteMemory(m_buffer, address, length))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::P() { ++m_receive_packet; /* Validate format. */ char *equal = std::strchr(m_receive_packet, '='); if (equal == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } *equal = 0; /* Decode the register. */ const u64 reg_num = DecodeHex(m_receive_packet); /* Get the flags. */ const u32 flags = RegisterToContextFlags(reg_num, m_debug_process.Is64Bit()); /* Determine thread id. */ u32 thread_id = m_debug_process.GetThreadIdOverride(); if (thread_id == 0 || thread_id == static_cast(-1)) { thread_id = m_debug_process.GetLastThreadId(); } /* Update the register. */ svc::ThreadContext ctx; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, flags))) { ParseGdbRegisterPacket(ctx, equal + 1, reg_num, m_debug_process.Is64Bit()); if (R_SUCCEEDED(m_debug_process.SetThreadContext(std::addressof(ctx), thread_id, flags))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::Q() { if (false) { /* TODO: QStartNoAckMode? */ } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented Q: %s\n", m_receive_packet); } } void GdbServerImpl::T() { if (const char *dot = std::strchr(m_receive_packet, '.'); dot != nullptr) { const u64 thread_id = DecodeHex(dot + 1); svc::ThreadContext ctx; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, svc::ThreadContextFlag_Control))) { SetReplyOk(m_reply_packet); } else { SetReply(m_reply_packet, "E01"); } } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::Z() { /* Increment past the 'Z'. */ ++m_receive_packet; /* Decode the type. */ if (!('0' <= m_receive_packet[0] && m_receive_packet[0] <= '4') || m_receive_packet[1] != ',') { SetReplyError(m_reply_packet, "E01"); return; } const auto type = m_receive_packet[0] - '0'; m_receive_packet += 2; /* Decode the address/length. */ const char *comma = std::strchr(m_receive_packet, ','); if (comma == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } /* Parse address/length. */ const u64 address = DecodeHex(m_receive_packet); const u64 length = DecodeHex(comma + 1); switch (type) { case 0: /* SW */ { if (length == 2 || length == 4) { if (R_SUCCEEDED(m_debug_process.SetBreakPoint(address, length, false))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } } break; case 1: /* HW */ { if (length == 2 || length == 4) { if (R_SUCCEEDED(m_debug_process.SetHardwareBreakPoint(address, length, false))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } } break; case 2: /* Watch-W */ { if (m_debug_process.IsValidWatchPoint(address, length)) { if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, false, true))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } } break; case 3: /* Watch-R */ { if (m_debug_process.IsValidWatchPoint(address, length)) { if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, true, false))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } } break; case 4: /* Watch-A */ { if (m_debug_process.IsValidWatchPoint(address, length)) { if (R_SUCCEEDED(m_debug_process.SetWatchPoint(address, length, true, true))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } } break; default: break; } } void GdbServerImpl::c() { /* Get thread id. */ u64 thread_id = m_debug_process.GetThreadIdOverride(); if (thread_id == 0 || thread_id == static_cast(-1)) { thread_id = m_debug_process.GetLastThreadId(); } /* Continue the thread. */ Result result; if (thread_id == m_debug_process.GetLastThreadId()) { result = m_debug_process.Continue(thread_id); } else { result = m_debug_process.Continue(); } if (R_SUCCEEDED(result)) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } bool GdbServerImpl::g() { /* Get thread id. */ u64 thread_id = m_debug_process.GetThreadIdOverride(); if (thread_id == 0 || thread_id == static_cast(-1)) { thread_id = m_debug_process.GetLastThreadId(); } /* Get thread context. */ svc::ThreadContext thread_context; if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(thread_context), thread_id, svc::ThreadContextFlag_All))) { return false; } /* Populate reply packet. */ SetGdbRegisterPacket(m_reply_packet, thread_context, m_debug_process.Is64Bit()); return true; } void GdbServerImpl::m() { ++m_receive_packet; /* Validate format. */ const char *comma = std::strchr(m_receive_packet, ','); if (comma == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } /* Parse address/length. */ const u64 address = DecodeHex(m_receive_packet); const u64 length = DecodeHex(comma + 1); if (length >= sizeof(m_buffer)) { SetReplyError(m_reply_packet, "E01"); return; } /* Read the memory. */ /* TODO: Detect partial readability? */ if (R_FAILED(m_debug_process.ReadMemory(m_buffer, address, length))) { SetReplyError(m_reply_packet, "E01"); return; } /* Encode the memory. */ MemoryToHex(m_reply_packet, m_buffer, length); } void GdbServerImpl::k() { m_debug_process.Terminate(); m_killed = true; } void GdbServerImpl::p() { ++m_receive_packet; /* Decode the register. */ const u64 reg_num = DecodeHex(m_receive_packet); /* Get the flags. */ const u32 flags = RegisterToContextFlags(reg_num, m_debug_process.Is64Bit()); /* Determine thread id. */ u32 thread_id = m_debug_process.GetThreadIdOverride(); if (thread_id == 0 || thread_id == static_cast(-1)) { thread_id = m_debug_process.GetLastThreadId(); } /* Get the register. */ svc::ThreadContext ctx; if (R_SUCCEEDED(m_debug_process.GetThreadContext(std::addressof(ctx), thread_id, flags))) { SetGdbRegisterPacket(m_reply_packet, ctx, reg_num, m_debug_process.Is64Bit()); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::v() { if (ParsePrefix(m_receive_packet, "vAttach;")) { this->vAttach(); } else if (ParsePrefix(m_receive_packet, "vCont")) { this->vCont(); } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented v: %s\n", m_receive_packet); } } void GdbServerImpl::vAttach() { if (!this->HasDebugProcess()) { /* Get the process id. */ if (const u64 process_id = DecodeHex(m_receive_packet); process_id != 0) { /* Set our process id. */ m_process_id = { process_id }; /* Wait for us to be attached. */ { std::scoped_lock lk(g_event_request_lock); g_event_request_cv.Signal(); if (!g_event_done_cv.TimedWait(g_event_request_lock, TimeSpan::FromSeconds(2))) { m_event.Signal(); } } /* If we're attached, send a stop reply packet. */ if (m_debug_process.IsValid()) { /* Set the stop reply packet. */ this->SetStopReplyPacket(m_debug_process.GetLastSignal()); } else { SetReplyError(m_reply_packet, "E01"); } } else { SetReplyError(m_reply_packet, "E01"); } } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::vCont() { /* Check if this is a query about what we support. */ if (ParsePrefix(m_receive_packet, "?")) { SetReply(m_reply_packet, "vCont;c;C;s;S;"); return; } /* We want to parse semicolon separated fields repeatedly. */ char *saved; char *token = strtok_r(m_receive_packet, ";", std::addressof(saved)); /* Validate the initial token. */ if (token == nullptr) { return; } /* Prepare to parse threads. */ u64 thread_ids[DebugProcess::ThreadCountMax] = {}; u8 continue_modes[DebugProcess::ThreadCountMax] = {}; s32 num_threads; if (R_FAILED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) { AMS_DMNT2_GDB_LOG_ERROR("vCont: Failed to get thread list\n"); SetReplyError(m_reply_packet, "E01"); return; } /* Handle each token. */ Result result = ResultSuccess(); DebugProcess::ContinueMode default_continue_mode = DebugProcess::ContinueMode_Stopped; while (token != nullptr && R_SUCCEEDED(result)) { result = this->ParseVCont(token, thread_ids, continue_modes, num_threads, default_continue_mode); token = strtok_r(nullptr, ";", std::addressof(saved)); } AMS_DMNT2_GDB_LOG_DEBUG("vCont: NumThreads=%d, Default Continue Mode=%d\n", num_threads, static_cast(default_continue_mode)); /* Act on all threads. */ s64 thread_id = -1; for (auto i = 0; i < num_threads; ++i) { if (continue_modes[i] == DebugProcess::ContinueMode_Step || (continue_modes[i] == DebugProcess::ContinueMode_Stopped && default_continue_mode == DebugProcess::ContinueMode_Step)) { thread_id = thread_ids[i]; result = m_debug_process.Step(thread_ids[i]); } } /* Continue the last thread. */ if (static_cast(thread_id) == m_debug_process.GetLastThreadId() && default_continue_mode != DebugProcess::ContinueMode_Continue) { result = m_debug_process.Continue(thread_id); } else { result = m_debug_process.Continue(); } /* Set reply. */ if (R_SUCCEEDED(result)) { SetReplyOk(m_reply_packet); } else { AMS_DMNT2_GDB_LOG_ERROR("vCont: Failed %08x\n", result.GetValue()); SetReplyError(m_reply_packet, "E01"); } } Result GdbServerImpl::ParseVCont(char * const token, u64 *thread_ids, u8 *continue_modes, s32 num_threads, DebugProcess::ContinueMode &default_continue_mode) { /* Parse the thread id. */ s64 thread_id = -1; s32 signal = -1; s32 thread_ix = -1; if (token[0] && token[1]) { if (char *colon = std::strchr(token, ':'); colon != nullptr) { *colon = 0; if (char *dot = std::strchr(colon + 1, '.'); dot != nullptr) { *dot = 0; thread_id = std::strcmp(dot + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(dot + 1)); thread_ix = FindThreadIdIndex(thread_ids, num_threads, static_cast(thread_id)); } } } /* Check that we don't already have a default mode. */ if (thread_id == -1 && default_continue_mode != DebugProcess::ContinueMode_Stopped) { AMS_DMNT2_GDB_LOG_ERROR("vCont: Too many defaults specified\n"); } /* Handle the action. */ switch (token[0]) { case 'c': if (thread_id > 0) { AMS_DMNT2_GDB_LOG_DEBUG("vCont: Continue %lx\n", static_cast(thread_id)); continue_modes[thread_ix] = DebugProcess::ContinueMode_Continue; } else { default_continue_mode = DebugProcess::ContinueMode_Continue; } break; case 'C': if (token[1]) { signal = std::strcmp(token + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(token + 1)); } AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring C, signal=%d\n", signal); if (thread_id > 0) { AMS_DMNT2_GDB_LOG_DEBUG("vCont: Continue %lx, signal=%d\n", static_cast(thread_id), signal); continue_modes[thread_ix] = DebugProcess::ContinueMode_Continue; } else { default_continue_mode = DebugProcess::ContinueMode_Continue; } break; case 's': if (thread_id > 0) { AMS_DMNT2_GDB_LOG_DEBUG("vCont: Step %lx\n", static_cast(thread_id)); continue_modes[thread_ix] = DebugProcess::ContinueMode_Step; } else { default_continue_mode = DebugProcess::ContinueMode_Step; } break; case 'S': if (token[1]) { signal = std::strcmp(token + 1, "-1") == 0 ? -1 : static_cast(DecodeHex(token + 1)); } AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring S, signal=%d\n", signal); if (thread_id > 0) { AMS_DMNT2_GDB_LOG_DEBUG("vCont: Step %lx, signal=%d\n", static_cast(thread_id), signal); continue_modes[thread_ix] = DebugProcess::ContinueMode_Step; } else { default_continue_mode = DebugProcess::ContinueMode_Step; } break; default: AMS_DMNT2_GDB_LOG_WARN("vCont: Ignoring %c\n", token[0]); break; } return ResultSuccess(); } void GdbServerImpl::q() { if (ParsePrefix(m_receive_packet, "qAttached:")) { this->qAttached(); } else if (ParsePrefix(m_receive_packet, "qC")) { this->qC(); } else if (ParsePrefix(m_receive_packet, "qRcmd,")) { this->qRcmd(); } else if (ParsePrefix(m_receive_packet, "qSupported:")) { this->qSupported(); } else if (ParsePrefix(m_receive_packet, "qXfer:")) { this->qXfer(); } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented q: %s\n", m_receive_packet); } } void GdbServerImpl::qAttached() { if (this->HasDebugProcess()) { SetReply(m_reply_packet, "1"); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::qC() { if (this->HasDebugProcess()) { /* Send the thread id. */ SetReply(m_reply_packet, "QCp%lx.%lx", m_process_id.value, m_debug_process.GetLastThreadId()); } else { SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::qRcmd() { /* Decode the command. */ const auto packet_len = std::strlen(m_receive_packet); HexToMemory(m_buffer, m_receive_packet, packet_len); m_buffer[packet_len / 2] = '\x00'; /* Convert our response to hex, on complete. */ ON_SCOPE_EXIT { /* Convert response to hex. */ MemoryToHex(m_reply_packet, m_buffer, std::strlen(m_buffer)); }; /* Parse the command. */ char *command = reinterpret_cast(m_buffer); if (ParsePrefix(command, "help")) { SetReply(m_buffer, "get info\n" "get mappings\n" "get mapping {address}\n" "wait application\n" "wait {program id}\n" "wait homebrew\n"); } else if (ParsePrefix(command, "get base") || ParsePrefix(command, "get info") || ParsePrefix(command, "get modules")) { if (!this->HasDebugProcess()) { SetReply(m_buffer, "Not attached.\n"); return; } SetReply(m_buffer, "Process: 0x%lx (%s)\n" "Program Id: 0x%016lx\n" "Application: %d\n" "Hbl: %d\n" "Layout:\n", m_process_id.value, m_debug_process.GetProcessName(), m_debug_process.GetProgramLocation().program_id.value, m_debug_process.IsApplication(), m_debug_process.GetOverrideStatus().IsHbl()); AppendReply(m_buffer, " Alias: 0x%010lx - 0x%010lx\n" " Heap: 0x%010lx - 0x%010lx\n" " Aslr: 0x%010lx - 0x%010lx\n" " Stack: 0x%010lx - 0x%010lx\n" "Modules:\n", m_debug_process.GetAliasRegionAddress(), m_debug_process.GetAliasRegionAddress() + m_debug_process.GetAliasRegionSize() - 1, m_debug_process.GetHeapRegionAddress(), m_debug_process.GetHeapRegionAddress() + m_debug_process.GetHeapRegionSize() - 1, m_debug_process.GetAslrRegionAddress(), m_debug_process.GetAslrRegionAddress() + m_debug_process.GetAslrRegionSize() - 1, m_debug_process.GetStackRegionAddress(), m_debug_process.GetStackRegionAddress() + m_debug_process.GetStackRegionSize() - 1); /* Get the module list. */ for (size_t i = 0; i < m_debug_process.GetModuleCount(); ++i) { const char *module_name = m_debug_process.GetModuleName(i); const auto name_len = std::strlen(module_name); if (name_len < 5 || (std::strcmp(module_name + name_len - 4, ".elf") != 0 && std::strcmp(module_name + name_len - 4, ".nss") != 0)) { AppendReply(m_buffer, " 0x%010lx - 0x%010lx %s.elf\n", m_debug_process.GetModuleBaseAddress(i), m_debug_process.GetModuleBaseAddress(i) + m_debug_process.GetModuleSize(i) - 1, module_name); } else { AppendReply(m_buffer, " 0x%010lx - 0x%010lx %s\n", m_debug_process.GetModuleBaseAddress(i), m_debug_process.GetModuleBaseAddress(i) + m_debug_process.GetModuleSize(i) - 1, module_name); } } } else if (ParsePrefix(command, "get mappings")) { if (!this->HasDebugProcess()) { SetReply(m_buffer, "Not attached.\n"); return; } SetReply(m_buffer, "Mappings:\n"); uintptr_t cur_addr = 0; while (true) { /* Get mapping. */ svc::MemoryInfo mem_info; if (R_FAILED(m_debug_process.QueryMemory(std::addressof(mem_info), cur_addr))) { break; } if (mem_info.state != svc::MemoryState_Inaccessible || mem_info.base_address + mem_info.size - 1 != std::numeric_limits::max()) { const char *state = GetMemoryStateName(mem_info.state); const char *perm = GetMemoryPermissionString(mem_info); const char l = (mem_info.attribute & svc::MemoryAttribute_Locked) ? 'L' : '-'; const char i = (mem_info.attribute & svc::MemoryAttribute_IpcLocked) ? 'I' : '-'; const char d = (mem_info.attribute & svc::MemoryAttribute_DeviceShared) ? 'D' : '-'; const char u = (mem_info.attribute & svc::MemoryAttribute_Uncached) ? 'U' : '-'; AppendReply(m_buffer, " 0x%010lx - 0x%010lx %s %s %c%c%c%c [%d, %d]\n", mem_info.base_address, mem_info.base_address + mem_info.size - 1, perm, state, l, i, d, u, mem_info.ipc_count, mem_info.device_count); } /* Advance. */ const uintptr_t next_address = mem_info.base_address + mem_info.size; if (next_address <= cur_addr) { break; } cur_addr = next_address; } } else if (ParsePrefix(command, "get mapping ")) { if (!this->HasDebugProcess()) { SetReply(m_buffer, "Not attached.\n"); return; } /* Allow optional "0x" prefix. */ ParsePrefix(command, "0x"); /* Decode address. */ const u64 address = DecodeHex(command); /* Get mapping. */ svc::MemoryInfo mem_info; if (R_FAILED(m_debug_process.QueryMemory(std::addressof(mem_info), address))) { SetReply(m_buffer, "0x%016lx: No mapping.\n", address); } const char *state = GetMemoryStateName(mem_info.state); const char *perm = GetMemoryPermissionString(mem_info); const char l = (mem_info.attribute & svc::MemoryAttribute_Locked) ? 'L' : '-'; const char i = (mem_info.attribute & svc::MemoryAttribute_IpcLocked) ? 'I' : '-'; const char d = (mem_info.attribute & svc::MemoryAttribute_DeviceShared) ? 'D' : '-'; const char u = (mem_info.attribute & svc::MemoryAttribute_Uncached) ? 'U' : '-'; SetReply(m_buffer, "0x%010lx - 0x%010lx %s %s %c%c%c%c [%d, %d]\n", mem_info.base_address, mem_info.base_address + mem_info.size - 1, perm, state, l, i, d, u, mem_info.ipc_count, mem_info.device_count); } else if (ParsePrefix(command, "wait application") || ParsePrefix(command, "wait app")) { /* Wait for an application process. */ { /* Get hook to creation of application process. */ os::NativeHandle h; R_ABORT_UNLESS(pm::dmnt::HookToCreateApplicationProcess(std::addressof(h))); /* Wait for event. */ os::SystemEvent hook_event(h, true, os::InvalidNativeHandle, false, os::EventClearMode_AutoClear); hook_event.Wait(); } /* Get application process id. */ R_ABORT_UNLESS(pm::dmnt::GetApplicationProcessId(std::addressof(m_wait_process_id))); /* Note that we're attaching. */ SetReply(m_buffer, "Attach to 0x%lx.\n", m_wait_process_id.value); } else if (ParsePrefix(command, "wait ")) { /* Allow optional "0x" prefix. */ ParsePrefix(command, "0x"); /* Decode program id. */ const u64 program_id = DecodeHex(command); SetReply(m_buffer, "[TODO] wait for program id 0x%lx\n", program_id); } else { SetReply(m_reply_packet, "Unknown command `%s`\n", command); std::memcpy(m_buffer, m_reply_packet, std::strlen(m_reply_packet) + 1); } } void GdbServerImpl::qSupported() { /* Current string from devkita64-none-elf-gdb: */ /* qSupported:multiprocess+;swbreak+;hwbreak+;qRelocInsn+;fork-events+;vfork-events+;exec-events+;vContSupported+;QThreadEvents+;no-resumed+ */ SetReply(m_reply_packet, "PacketSize=%lx", GdbPacketBufferSize - 1); AppendReply(m_reply_packet, ";multiprocess+"); AppendReply(m_reply_packet, ";qXfer:osdata:read+"); AppendReply(m_reply_packet, ";qXfer:features:read+"); AppendReply(m_reply_packet, ";qXfer:libraries:read+"); // TODO: AppendReply(m_reply_packet, ";qXfer:libraries-svr4:read+"); // TODO: AppendReply(m_reply_packet, ";augmented-libraries-svr4-read+"); AppendReply(m_reply_packet, ";qXfer:threads:read+"); AppendReply(m_reply_packet, ";qXfer:exec-file:read+"); AppendReply(m_reply_packet, ";swbreak+"); AppendReply(m_reply_packet, ";hwbreak+"); AppendReply(m_reply_packet, ";vContSupported+"); } void GdbServerImpl::qXfer() { /* Check for osdata. */ if (ParsePrefix(m_receive_packet, "osdata:read:")) { this->qXferOsdataRead(); } else { /* All other qXfer require debug process. */ if (!this->HasDebugProcess()) { SetReplyError(m_reply_packet, "E01"); return; } /* Process. */ if (ParsePrefix(m_receive_packet, "features:read:")) { this->qXferFeaturesRead(); } else if (ParsePrefix(m_receive_packet, "threads:read::")) { if (!this->qXferThreadsRead()) { m_killed = true; SetReplyError(m_reply_packet, "E01"); } } else if (ParsePrefix(m_receive_packet, "libraries:read::")) { this->qXferLibrariesRead(); } else if (ParsePrefix(m_receive_packet, "exec-file:read:")) { SetReply(m_reply_packet, "l%s", m_debug_process.GetProcessName()); } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer: %s\n", m_receive_packet); SetReplyError(m_reply_packet, "E01"); } } } void GdbServerImpl::qXferFeaturesRead() { /* Handle the qXfer. */ u32 offset, length; if (ParsePrefix(m_receive_packet, "target.xml:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Send the desired xml. */ std::strncpy(m_reply_packet, (this->Is64Bit() ? TargetXmlAarch64 : TargetXmlAarch32) + offset, length); m_reply_packet[length] = 0; m_reply_packet += std::strlen(m_reply_packet); } else if (ParsePrefix(m_receive_packet, "aarch64-core.xml:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Send the desired xml. */ std::strncpy(m_reply_packet, Aarch64CoreXml + offset, length); m_reply_packet[length] = 0; m_reply_packet += std::strlen(m_reply_packet); } else if (ParsePrefix(m_receive_packet, "aarch64-fpu.xml:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Send the desired xml. */ std::strncpy(m_reply_packet, Aarch64FpuXml + offset, length); m_reply_packet[length] = 0; m_reply_packet += std::strlen(m_reply_packet); } else if (ParsePrefix(m_receive_packet, "arm-core.xml:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Send the desired xml. */ std::strncpy(m_reply_packet, ArmCoreXml + offset, length); m_reply_packet[length] = 0; m_reply_packet += std::strlen(m_reply_packet); } else if (ParsePrefix(m_receive_packet, "arm-vfp.xml:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Send the desired xml. */ std::strncpy(m_reply_packet, ArmVfpXml + offset, length); m_reply_packet[length] = 0; m_reply_packet += std::strlen(m_reply_packet); } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer:features:read: %s\n", m_receive_packet); SetReplyError(m_reply_packet, "E01"); } } void GdbServerImpl::qXferLibrariesRead() { /* Handle the qXfer. */ u32 offset, length; /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Acquire access to the annex buffer. */ std::scoped_lock lk(g_annex_buffer_lock); /* If doing a fresh read, generate the module list. */ if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Libraries) { /* Set header. */ SetReply(g_annex_buffer, ""); /* Get the module list. */ for (size_t i = 0; i < m_debug_process.GetModuleCount(); ++i) { AMS_DMNT2_GDB_LOG_DEBUG("Module[%zu]: %p, %s\n", i, reinterpret_cast(m_debug_process.GetModuleBaseAddress(i)), m_debug_process.GetModuleName(i)); const char *module_name = m_debug_process.GetModuleName(i); const auto name_len = std::strlen(module_name); if (name_len < 5 || (std::strcmp(module_name + name_len - 4, ".elf") != 0 && std::strcmp(module_name + name_len - 4, ".nss") != 0)) { AppendReply(g_annex_buffer, "", module_name, m_debug_process.GetModuleBaseAddress(i)); } else { AppendReply(g_annex_buffer, "", module_name, m_debug_process.GetModuleBaseAddress(i)); } } AppendReply(g_annex_buffer, ""); g_annex_buffer_contents = AnnexBufferContents_Libraries; } /* Copy out the module list. */ GetAnnexBufferContents(m_reply_packet, offset, length); } void GdbServerImpl::qXferOsdataRead() { /* Handle the qXfer. */ u32 offset, length; if (ParsePrefix(m_receive_packet, "processes:")) { /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Acquire access to the annex buffer. */ std::scoped_lock lk(g_annex_buffer_lock); /* If doing a fresh read, generate the process list. */ if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Processes) { /* Clear the process list buffer. */ g_annex_buffer[0] = 0; /* Set header. */ SetReply(g_annex_buffer, "\n\n\n"); /* Get all processes. */ { /* Get all process ids. */ u64 process_ids[0x50]; s32 num_process_ids; R_ABORT_UNLESS(svc::GetProcessList(std::addressof(num_process_ids), process_ids, util::size(process_ids))); /* Send all processes. */ for (s32 i = 0; i < num_process_ids; ++i) { svc::Handle handle; if (R_SUCCEEDED(svc::DebugActiveProcess(std::addressof(handle), process_ids[i]))) { ON_SCOPE_EXIT { R_ABORT_UNLESS(svc::CloseHandle(handle)); }; /* Get the create process event. */ svc::DebugEventInfo d; R_ABORT_UNLESS(svc::GetDebugEvent(std::addressof(d), handle)); AMS_ABORT_UNLESS(d.type == svc::DebugEvent_CreateProcess); AppendReply(g_annex_buffer, "\n%lu\n%s\n\n", d.info.create_process.process_id, d.info.create_process.name); } } } /* Set footer. */ AppendReply(g_annex_buffer, ""); g_annex_buffer_contents = AnnexBufferContents_Processes; } /* Copy out the process list. */ GetAnnexBufferContents(m_reply_packet, offset, length); } else { AMS_DMNT2_GDB_LOG_DEBUG("Not Implemented qxfer:osdata:read: %s\n", m_receive_packet); SetReplyError(m_reply_packet, "E01"); } } bool GdbServerImpl::qXferThreadsRead() { /* Handle the qXfer. */ u32 offset, length; /* Parse offset/length. */ ParseOffsetLength(m_receive_packet, offset, length); /* Acquire access to the annex buffer. */ std::scoped_lock lk(g_annex_buffer_lock); /* If doing a fresh read, generate the thread list. */ if (offset == 0 || g_annex_buffer_contents != AnnexBufferContents_Threads) { /* Set header. */ SetReply(g_annex_buffer, ""); /* Get the thread list. */ u64 thread_ids[DebugProcess::ThreadCountMax]; s32 num_threads; if (R_SUCCEEDED(m_debug_process.GetThreadList(std::addressof(num_threads), thread_ids, util::size(thread_ids)))) { for (auto i = 0; i < num_threads; ++i) { /* Check that we can get the thread context. */ { svc::ThreadContext dummy_context; if (R_FAILED(m_debug_process.GetThreadContext(std::addressof(dummy_context), thread_ids[i], svc::ThreadContextFlag_All))) { continue; } } /* Get the thread core. */ u32 core = 0; m_debug_process.GetThreadCurrentCore(std::addressof(core), thread_ids[i]); /* Get the thread name. */ char name[os::ThreadNameLengthMax + 1]; m_debug_process.GetThreadName(name, thread_ids[i]); name[sizeof(name) - 1] = '\x00'; /* Set the thread entry */ AppendReply(g_annex_buffer, "", m_process_id.value, thread_ids[i], core, name); } } AppendReply(g_annex_buffer, ""); g_annex_buffer_contents = AnnexBufferContents_Threads; } /* Copy out the threads list. */ GetAnnexBufferContents(m_reply_packet, offset, length); return true; } void GdbServerImpl::z() { /* Increment past the 'z'. */ ++m_receive_packet; /* Decode the type. */ if (!('0' <= m_receive_packet[0] && m_receive_packet[0] <= '4') || m_receive_packet[1] != ',') { SetReplyError(m_reply_packet, "E01"); return; } const auto type = m_receive_packet[0] - '0'; m_receive_packet += 2; /* Decode the address/length. */ const char *comma = std::strchr(m_receive_packet, ','); if (comma == nullptr) { SetReplyError(m_reply_packet, "E01"); return; } /* Parse address/length. */ const u64 address = DecodeHex(m_receive_packet); const u64 length = DecodeHex(comma + 1); switch (type) { case 0: /* SW */ { if (R_SUCCEEDED(m_debug_process.ClearBreakPoint(address, length))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } break; case 1: /* HW */ { if (R_SUCCEEDED(m_debug_process.ClearHardwareBreakPoint(address, length))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } break; case 2: /* Watch-W */ case 3: /* Watch-R */ case 4: /* Watch-A */ { if (R_SUCCEEDED(m_debug_process.ClearWatchPoint(address, length))) { SetReplyOk(m_reply_packet); } else { SetReplyError(m_reply_packet, "E01"); } } break; default: break; } } void GdbServerImpl::QuestionMark() { if (m_debug_process.IsValid()) { if (m_debug_process.GetLastThreadId() == 0) { SetReply(m_reply_packet, "X01"); } else { this->SetStopReplyPacket(m_debug_process.GetLastSignal()); } } else { SetReply(m_reply_packet, "W00"); } } }