/* * Copyright (c) Atmosphère-NX * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <exosphere.hpp> #include "../secmon_error.hpp" #include "secmon_boot.hpp" #include "secmon_boot_cache.hpp" #include "secmon_boot_functions.hpp" namespace ams::secmon::boot { namespace { constexpr inline uintptr_t SYSCTR0 = MemoryRegionVirtualDeviceSysCtr0.GetAddress(); NOINLINE void DecryptPayload(uintptr_t dst, uintptr_t src, size_t size, const void *iv, size_t iv_size, u8 key_generation) { secmon::boot::DecryptPackage2(reinterpret_cast<void *>(dst), size, reinterpret_cast<void *>(src), size, secmon::boot::GetPackage2AesKey(), crypto::AesEncryptor128::KeySize, iv, iv_size, key_generation); } u32 GetChipId() { constexpr u32 ChipIdErista = 0x210; constexpr u32 ChipIdMariko = 0x214; switch (GetSocType()) { case fuse::SocType_Erista: return ChipIdErista; case fuse::SocType_Mariko: return ChipIdMariko; AMS_UNREACHABLE_DEFAULT_CASE(); } } } void CheckVerifyResult(bool verify_result, pkg1::ErrorInfo error_info, const char *message) { if (!verify_result) { secmon::SetError(error_info); AMS_ABORT(message); } } void ClearIramBootCode() { /* Clear the boot code image from where it was loaded in IRAM. */ util::ClearMemory(MemoryRegionPhysicalIramBootCodeCode.GetPointer(), MemoryRegionPhysicalIramBootCodeCode.GetSize()); } void ClearIramBootKeys() { /* Clear the boot keys from where they were loaded in IRAM. */ util::ClearMemory(MemoryRegionPhysicalIramBootCodeKeys.GetPointer(), MemoryRegionPhysicalIramBootCodeKeys.GetSize()); } void ClearIramDebugCode() { /* Clear the boot code image from where it was loaded in IRAM. */ util::ClearMemory(MemoryRegionPhysicalDebugCode.GetPointer(), MemoryRegionPhysicalDebugCode.GetSize()); } void WaitForNxBootloader(const pkg1::SecureMonitorParameters ¶ms, pkg1::BootloaderState state) { /* Check NX Bootloader's state once per microsecond until it's advanced enough. */ while (params.bootloader_state < state) { util::WaitMicroSeconds(1); } } void LoadBootConfig(const void *src) { pkg1::BootConfig * const dst = secmon::impl::GetBootConfigStorage(); if (pkg1::IsProduction()) { std::memset(dst, 0, sizeof(*dst)); } else { hw::FlushDataCache(src, sizeof(*dst)); hw::DataSynchronizationBarrierInnerShareable(); std::memcpy(dst, src, sizeof(*dst)); } } void VerifyOrClearBootConfig() { /* On production hardware, the boot config is already cleared. */ if (pkg1::IsProduction()) { return; } pkg1::BootConfig * const bc = secmon::impl::GetBootConfigStorage(); /* Determine if the bc is valid for the device. */ bool valid_for_device = false; { const bool valid_signature = secmon::boot::VerifyBootConfigSignature(*bc, secmon::boot::GetBootConfigRsaModulus(), se::RsaSize); if (valid_signature) { valid_for_device = secmon::boot::VerifyBootConfigEcid(*bc); } } /* If the boot config is not valid for the device, clear its signed data. */ if (!valid_for_device) { util::ClearMemory(std::addressof(bc->signed_data), sizeof(bc->signed_data)); } } void EnableTsc(u64 initial_tsc_value) { /* Write the initial value to the CNTCV registers. */ const u32 lo = static_cast<u32>(initial_tsc_value >> 0); const u32 hi = static_cast<u32>(initial_tsc_value >> 32); reg::Write(SYSCTR0 + SYSCTR0_CNTCV0, lo); reg::Write(SYSCTR0 + SYSCTR0_CNTCV1, hi); /* Configure the system counter control register. */ reg::Write(SYSCTR0 + SYSCTR0_CNTCR, SYSCTR0_REG_BITS_ENUM(CNTCR_HDBG, ENABLE), SYSCTR0_REG_BITS_ENUM(CNTCR_EN, ENABLE)); } void WriteGpuCarveoutMagicNumbers() { /* Define the magic numbers. */ constexpr u32 GpuMagicNumber = 0xC0EDBBCC; constexpr u32 SkuInfo = 0x83; constexpr u32 HdcpMicroCodeVersion = 0x2; /* Get our pointers. */ u32 *gpu_magic = MemoryRegionDramGpuCarveout.GetEndPointer<u32>() - (0x004 / sizeof(*gpu_magic)); u32 *tsec_magic = MemoryRegionDramGpuCarveout.GetEndPointer<u32>() - (0x100 / sizeof(*tsec_magic)); /* Write the gpu magic number. */ gpu_magic[0] = GpuMagicNumber; /* Write the tsec magic numbers. */ tsec_magic[0] = SkuInfo; tsec_magic[1] = HdcpMicroCodeVersion; tsec_magic[2] = GetChipId(); /* Flush the magic numbers. */ hw::FlushDataCache(gpu_magic, 1 * sizeof(u32)); hw::FlushDataCache(tsec_magic, 3 * sizeof(u32)); hw::DataSynchronizationBarrierInnerShareable(); } void UpdateBootConfigForPackage2Header(const pkg2::Package2Header &header) { /* Check for all-zeroes signature. */ const bool is_unsigned = header.signature[0] == 0 && crypto::IsSameBytes(header.signature, header.signature + 1, sizeof(header.signature) - 1); secmon::impl::GetBootConfigStorage()->signed_data.SetPackage2SignatureVerificationDisabled(is_unsigned); /* Check for valid magic. */ const bool is_decrypted = crypto::IsSameBytes(header.meta.magic, pkg2::Package2Meta::Magic::String, sizeof(header.meta.magic)); secmon::impl::GetBootConfigStorage()->signed_data.SetPackage2EncryptionDisabled(is_decrypted); } void VerifyPackage2HeaderSignature(pkg2::Package2Header &header, bool verify) { const u8 * const mod = secmon::boot::GetPackage2RsaModulus(pkg1::IsProductionForPublicKey()); const size_t mod_size = se::RsaSize; if (verify) { CheckVerifyResult(secmon::boot::VerifyPackage2Signature(header, mod, mod_size), pkg1::ErrorInfo_InvalidPackage2Signature, "pkg2 sign FAIL"); } } void DecryptPackage2Header(pkg2::Package2Meta *dst, const pkg2::Package2Meta &src, bool encrypted) { if (encrypted) { constexpr int IvSize = 0x10; /* Decrypt the header. */ DecryptPackage2(dst, sizeof(*dst), std::addressof(src), sizeof(src), secmon::boot::GetPackage2AesKey(), crypto::AesEncryptor128::KeySize, std::addressof(src), IvSize, src.GetKeyGeneration()); /* Copy back the iv, which encodes encrypted metadata. */ std::memcpy(dst, std::addressof(src), IvSize); } else { std::memcpy(dst, std::addressof(src), sizeof(*dst)); } } void VerifyPackage2Header(const pkg2::Package2Meta &meta) { /* Validate the metadata. */ CheckVerifyResult(VerifyPackage2Meta(meta), pkg1::ErrorInfo_InvalidPackage2Meta, "pkg2 meta FAIL"); /* Validate the version. */ CheckVerifyResult(VerifyPackage2Version(meta), pkg1::ErrorInfo_InvalidPackage2Version, "pkg2 version FAIL"); } void DecryptAndLoadPackage2Payloads(uintptr_t dst, const pkg2::Package2Meta &meta, uintptr_t src, bool encrypted) { /* Get the key generation for crypto. */ const u8 key_generation = meta.GetKeyGeneration(); /* Decrypt or load each payload in order. */ for (int i = 0; i < pkg2::PayloadCount; ++i) { AMS_SECMON_LOG("pkg2 payload[%d]: %09lx -> %09lx size=%08x\n", i, src, dst + meta.payload_offsets[i], meta.payload_sizes[i]); if (encrypted) { DecryptPayload(dst + meta.payload_offsets[i], src, meta.payload_sizes[i], meta.payload_ivs[i], sizeof(meta.payload_ivs[i]), key_generation); } else { std::memcpy(reinterpret_cast<void *>(dst + meta.payload_offsets[i]), reinterpret_cast<void *>(src), meta.payload_sizes[i]); } src += meta.payload_sizes[i]; } } }