2020-12-28 15:54:25 -08:00

283 lines
9.6 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
namespace ams::spl {
namespace {
enum class InitializeMode {
None,
General,
Crypto,
Ssl,
Es,
Fs,
Manu
};
os::SdkMutex g_mutex;
s32 g_initialize_count = 0;
InitializeMode g_initialize_mode = InitializeMode::None;
Result AllocateAesKeySlotImpl(s32 *out) {
return serviceDispatchOut(splCryptoGetServiceSession(), 21, *out);
}
Result DeallocateAesKeySlotImpl(s32 slot) {
return serviceDispatchIn(splCryptoGetServiceSession(), 22, slot);
}
Result GetAesKeySlotAvailableEventImpl(Handle *out) {
return serviceDispatch(splCryptoGetServiceSession(), 23,
.out_handle_attrs = { SfOutHandleAttr_HipcCopy },
.out_handles = out,
);
}
void GetAesKeySlotAvailableEvent(os::SystemEvent *out) {
/* Get libnx event. */
Handle handle = svc::InvalidHandle;
R_ABORT_UNLESS(GetAesKeySlotAvailableEventImpl(std::addressof(handle)));
/* Attach to event. */
out->AttachReadableHandle(handle, true, os::EventClearMode_ManualClear);
}
template<typename F>
Result WaitAvailableKeySlotAndExecute(F f) {
os::SystemEvent event;
auto is_event_initialized = false;
while (true) {
R_TRY_CATCH(static_cast<::ams::Result>(f())) {
R_CATCH(spl::ResultOutOfKeySlots) {
if (!is_event_initialized) {
GetAesKeySlotAvailableEvent(std::addressof(event));
is_event_initialized = true;
}
event.Wait();
continue;
}
} R_END_TRY_CATCH;
return ResultSuccess();
}
}
template<typename F>
void Initialize(InitializeMode mode, F f) {
std::scoped_lock lk(g_mutex);
AMS_ASSERT(g_initialize_count >= 0);
AMS_ABORT_UNLESS(mode != InitializeMode::None);
if (g_initialize_count == 0) {
AMS_ABORT_UNLESS(g_initialize_mode == InitializeMode::None);
f();
g_initialize_mode = mode;
} else {
AMS_ABORT_UNLESS(g_initialize_mode == mode);
}
++g_initialize_count;
}
}
void Initialize() {
return Initialize(InitializeMode::General, [&]() {
R_ABORT_UNLESS(splInitialize());
});
}
void InitializeForCrypto() {
return Initialize(InitializeMode::Crypto, [&]() {
R_ABORT_UNLESS(splCryptoInitialize());
});
}
void InitializeForSsl() {
return Initialize(InitializeMode::Ssl, [&]() {
R_ABORT_UNLESS(splSslInitialize());
});
}
void InitializeForEs() {
return Initialize(InitializeMode::Es, [&]() {
R_ABORT_UNLESS(splEsInitialize());
});
}
void InitializeForFs() {
return Initialize(InitializeMode::Fs, [&]() {
R_ABORT_UNLESS(splFsInitialize());
});
}
void InitializeForManu() {
return Initialize(InitializeMode::Manu, [&]() {
R_ABORT_UNLESS(splManuInitialize());
});
}
void Finalize() {
std::scoped_lock lk(g_mutex);
AMS_ASSERT(g_initialize_count > 0);
AMS_ABORT_UNLESS(g_initialize_mode != InitializeMode::None);
if ((--g_initialize_count) == 0) {
switch (g_initialize_mode) {
case InitializeMode::General: splExit(); break;
case InitializeMode::Crypto: splCryptoExit(); break;
case InitializeMode::Ssl: splSslExit(); break;
case InitializeMode::Es: splEsExit(); break;
case InitializeMode::Fs: splFsExit(); break;
case InitializeMode::Manu: splManuExit(); break;
AMS_UNREACHABLE_DEFAULT_CASE();
}
g_initialize_mode = InitializeMode::None;
}
}
Result AllocateAesKeySlot(s32 *out_slot) {
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return AllocateAesKeySlotImpl(out_slot);
});
}
Result DeallocateAesKeySlot(s32 slot) {
return DeallocateAesKeySlotImpl(slot);
}
Result GenerateAesKek(AccessKey *access_key, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splCryptoGenerateAesKek(key_source, generation, option, static_cast<void *>(access_key));
}
Result LoadAesKey(s32 slot, const AccessKey &access_key, const void *key_source, size_t key_source_size) {
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splCryptoLoadAesKey(std::addressof(access_key), key_source, static_cast<u32>(slot));
}
Result GenerateAesKey(void *dst, size_t dst_size, const AccessKey &access_key, const void *key_source, size_t key_source_size) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return splCryptoGenerateAesKey(std::addressof(access_key), key_source, dst);
});
}
Result GenerateSpecificAesKey(void *dst, size_t dst_size, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return splFsGenerateSpecificAesKey(key_source, static_cast<u32>(generation), option, dst);
}
Result ComputeCtr(void *dst, size_t dst_size, s32 slot, const void *src, size_t src_size, const void *iv, size_t iv_size) {
AMS_ASSERT(iv_size >= 0x10);
AMS_ASSERT(dst_size >= src_size);
return splCryptoCryptAesCtr(src, dst, src_size, static_cast<s32>(slot), iv);
}
Result DecryptAesKey(void *dst, size_t dst_size, const void *key_source, size_t key_source_size, s32 generation, u32 option) {
AMS_ASSERT(dst_size >= crypto::AesEncryptor128::KeySize);
AMS_ASSERT(key_source_size == sizeof(KeySource));
return WaitAvailableKeySlotAndExecute([&]() -> Result {
return splCryptoDecryptAesKey(key_source, static_cast<u32>(generation), option, dst);
});
}
Result GetConfig(u64 *out, ConfigItem item) {
return splGetConfig(static_cast<::SplConfigItem>(item), out);
}
bool IsDevelopment() {
bool is_dev;
R_ABORT_UNLESS(splIsDevelopment(std::addressof(is_dev)));
return is_dev;
}
MemoryArrangement GetMemoryArrangement() {
u64 mode = 0;
R_ABORT_UNLESS(spl::GetConfig(std::addressof(mode), spl::ConfigItem::MemoryMode));
switch (mode & 0x3F) {
case 2:
return MemoryArrangement_StandardForAppletDev;
case 3:
return MemoryArrangement_StandardForSystemDev;
case 17:
return MemoryArrangement_Expanded;
case 18:
return MemoryArrangement_ExpandedForAppletDev;
default:
return MemoryArrangement_Standard;
}
}
Result SetBootReason(BootReasonValue boot_reason) {
static_assert(sizeof(boot_reason) == sizeof(u32));
u32 v;
std::memcpy(std::addressof(v), std::addressof(boot_reason), sizeof(v));
return splSetBootReason(v);
}
Result GetBootReason(BootReasonValue *out) {
static_assert(sizeof(*out) == sizeof(u32));
u32 v;
R_TRY(splGetBootReason(std::addressof(v)));
std::memcpy(out, std::addressof(v), sizeof(*out));
return ResultSuccess();
}
SocType GetSocType() {
switch (GetHardwareType()) {
case HardwareType::Icosa:
case HardwareType::Copper:
return SocType_Erista;
case HardwareType::Hoag:
case HardwareType::Iowa:
case HardwareType::Aula:
return SocType_Mariko;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
Result GetPackage2Hash(void *dst, size_t dst_size) {
AMS_ASSERT(dst_size >= crypto::Sha256Generator::HashSize);
return splFsGetPackage2Hash(dst);
}
Result GenerateRandomBytes(void *out, size_t buffer_size) {
return splGetRandomBytes(out, buffer_size);
}
Result LoadPreparedAesKey(s32 slot, const AccessKey &access_key) {
if (g_initialize_mode == InitializeMode::Fs) {
return splFsLoadTitlekey(std::addressof(access_key), static_cast<u32>(slot));
} else {
/* TODO: libnx binding not available. */
/* return splEsLoadTitlekey(std::addressof(access_key), static_cast<u32>(slot)); */
AMS_ABORT_UNLESS(false);
}
}
}