Atmosphere/libraries/libstratosphere/source/updater/updater_api.cpp
2020-12-28 15:54:25 -08:00

572 lines
29 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stratosphere.hpp>
#include <stratosphere/updater.hpp>
#include "updater_bis_save.hpp"
#include "updater_files.hpp"
#include "updater_paths.hpp"
namespace ams::updater {
namespace {
/* Validation Prototypes. */
Result ValidateWorkBuffer(const void *work_buffer, size_t work_buffer_size);
/* Configuration Prototypes. */
bool HasEks(BootImageUpdateType boot_image_update_type);
bool HasAutoRcmPreserve(BootImageUpdateType boot_image_update_type);
ncm::ContentMetaType GetContentMetaType(BootModeType mode);
/* Verification Prototypes. */
Result GetVerificationState(VerificationState *out, void *work_buffer, size_t work_buffer_size);
Result VerifyBootImages(ncm::SystemDataId data_id, BootModeType mode, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
Result VerifyBootImagesNormal(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
Result VerifyBootImagesSafe(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
/* Update Prototypes. */
Result SetVerificationNeeded(BootModeType mode, void *work_buffer, size_t work_buffer_size, bool needed);
Result UpdateBootImagesNormal(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
Result UpdateBootImagesSafe(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
/* Package helpers. */
Result ValidateBctFileHash(Boot0Accessor &accessor, Boot0Partition which, const void *stored_hash, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type);
Result GetPackage2Hash(void *dst_hash, size_t package2_size, void *work_buffer, size_t work_buffer_size, Package2Type which);
Result WritePackage2(void *work_buffer, size_t work_buffer_size, Package2Type which, BootImageUpdateType boot_image_update_type);
Result CompareHash(const void *lhs, const void *rhs, size_t size);
/* Implementations. */
Result ValidateWorkBuffer(const void *work_buffer, size_t work_buffer_size) {
R_UNLESS(work_buffer_size >= BctSize + EksSize, ResultTooSmallWorkBuffer());
R_UNLESS(util::IsAligned(work_buffer, os::MemoryPageSize), ResultNotAlignedWorkBuffer());
R_UNLESS(util::IsAligned(work_buffer_size, 0x200), ResultNotAlignedWorkBuffer());
return ResultSuccess();
}
bool HasEks(BootImageUpdateType boot_image_update_type) {
switch (boot_image_update_type) {
case BootImageUpdateType::Erista:
return true;
case BootImageUpdateType::Mariko:
return false;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
bool HasAutoRcmPreserve(BootImageUpdateType boot_image_update_type) {
switch (boot_image_update_type) {
case BootImageUpdateType::Erista:
return true;
case BootImageUpdateType::Mariko:
return false;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
ncm::ContentMetaType GetContentMetaType(BootModeType mode) {
switch (mode) {
case BootModeType::Normal:
return ncm::ContentMetaType::BootImagePackage;
case BootModeType::Safe:
return ncm::ContentMetaType::BootImagePackageSafe;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
Result GetVerificationState(VerificationState *out, void *work_buffer, size_t work_buffer_size) {
/* Always set output to true before doing anything else. */
out->needs_verify_normal = true;
out->needs_verify_safe = true;
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Initialize boot0 save accessor. */
BisSave save;
R_TRY(save.Initialize(work_buffer, work_buffer_size));
ON_SCOPE_EXIT { save.Finalize(); };
/* Load save from NAND. */
R_TRY(save.Load());
/* Read data from save. */
out->needs_verify_normal = save.GetNeedsVerification(BootModeType::Normal);
out->needs_verify_safe = save.GetNeedsVerification(BootModeType::Safe);
return ResultSuccess();
}
Result VerifyBootImagesAndRepairIfNeeded(bool *out_repaired, BootModeType mode, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Get system data id for boot images (819/81A/81B/81C). */
ncm::SystemDataId bip_data_id = {};
R_TRY(GetBootImagePackageId(&bip_data_id, mode, work_buffer, work_buffer_size));
/* Verify the boot images in NAND. */
R_TRY_CATCH(VerifyBootImages(bip_data_id, mode, work_buffer, work_buffer_size, boot_image_update_type)) {
R_CATCH(ResultNeedsRepairBootImages) {
/* Perform repair. */
*out_repaired = true;
R_TRY(UpdateBootImagesFromPackage(bip_data_id, mode, work_buffer, work_buffer_size, boot_image_update_type));
}
} R_END_TRY_CATCH;
/* We've either just verified or just repaired. Either way, we don't need to verify any more. */
return SetVerificationNeeded(mode, work_buffer, work_buffer_size, false);
}
Result VerifyBootImages(ncm::SystemDataId data_id, BootModeType mode, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
switch (mode) {
case BootModeType::Normal:
return VerifyBootImagesNormal(data_id, work_buffer, work_buffer_size, boot_image_update_type);
case BootModeType::Safe:
return VerifyBootImagesSafe(data_id, work_buffer, work_buffer_size, boot_image_update_type);
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
Result VerifyBootImagesNormal(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Mount the boot image package. */
const char *mount_name = GetMountName();
R_TRY_CATCH(fs::MountSystemData(mount_name, data_id)) {
R_CONVERT(fs::ResultTargetNotFound, ResultBootImagePackageNotFound())
} R_END_TRY_CATCH;
ON_SCOPE_EXIT { fs::Unmount(mount_name); };
/* Read and validate hashes of boot images. */
{
size_t size;
u8 nand_hash[crypto::Sha256Generator::HashSize];
u8 file_hash[crypto::Sha256Generator::HashSize];
Boot0Accessor boot0_accessor;
R_TRY(boot0_accessor.Initialize());
ON_SCOPE_EXIT { boot0_accessor.Finalize(); };
/* Detect the use of custom public key. */
/* If custom public key is present, we want to validate BCT Sub but not Main */
bool custom_public_key = false;
R_TRY(boot0_accessor.DetectCustomPublicKey(std::addressof(custom_public_key), work_buffer, boot_image_update_type));
/* Compare BCT hashes. */
if (!custom_public_key) {
R_TRY(boot0_accessor.GetHash(nand_hash, BctSize, work_buffer, work_buffer_size, Boot0Partition::BctNormalMain));
R_TRY(ValidateBctFileHash(boot0_accessor, Boot0Partition::BctNormalMain, nand_hash, work_buffer, work_buffer_size, boot_image_update_type));
}
/* Compare BCT Sub hashes. */
R_TRY(boot0_accessor.GetHash(nand_hash, BctSize, work_buffer, work_buffer_size, Boot0Partition::BctNormalSub));
R_TRY(ValidateBctFileHash(boot0_accessor, Boot0Partition::BctNormalSub, nand_hash, work_buffer, work_buffer_size, boot_image_update_type));
/* Compare Package1 Normal/Sub hashes. */
R_TRY(GetFileHash(&size, file_hash, GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size));
R_TRY(boot0_accessor.GetHash(nand_hash, size, work_buffer, work_buffer_size, Boot0Partition::Package1NormalMain));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
R_TRY(boot0_accessor.GetHash(nand_hash, size, work_buffer, work_buffer_size, Boot0Partition::Package1NormalSub));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
/* Compare Package2 Normal/Sub hashes. */
R_TRY(GetFileHash(&size, file_hash, GetPackage2Path(boot_image_update_type), work_buffer, work_buffer_size));
R_TRY(GetPackage2Hash(nand_hash, size, work_buffer, work_buffer_size, Package2Type::NormalMain));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
R_TRY(GetPackage2Hash(nand_hash, size, work_buffer, work_buffer_size, Package2Type::NormalSub));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
}
return ResultSuccess();
}
Result VerifyBootImagesSafe(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Mount the boot image package. */
const char *mount_name = GetMountName();
R_TRY_CATCH(fs::MountSystemData(mount_name, data_id)) {
R_CONVERT(fs::ResultTargetNotFound, ResultBootImagePackageNotFound())
} R_END_TRY_CATCH;
ON_SCOPE_EXIT { fs::Unmount(mount_name); };
/* Read and validate hashes of boot images. */
{
size_t size;
u8 nand_hash[crypto::Sha256Generator::HashSize];
u8 file_hash[crypto::Sha256Generator::HashSize];
Boot0Accessor boot0_accessor;
R_TRY(boot0_accessor.Initialize());
ON_SCOPE_EXIT { boot0_accessor.Finalize(); };
Boot1Accessor boot1_accessor;
R_TRY(boot1_accessor.Initialize());
ON_SCOPE_EXIT { boot1_accessor.Finalize(); };
/* Detect the use of custom public key. */
/* If custom public key is present, we want to validate BCT Sub but not Main */
bool custom_public_key = false;
R_TRY(boot0_accessor.DetectCustomPublicKey(std::addressof(custom_public_key), work_buffer, boot_image_update_type));
/* Compare BCT hashes. */
if (!custom_public_key) {
R_TRY(boot0_accessor.GetHash(nand_hash, BctSize, work_buffer, work_buffer_size, Boot0Partition::BctSafeMain));
R_TRY(ValidateBctFileHash(boot0_accessor, Boot0Partition::BctSafeMain, nand_hash, work_buffer, work_buffer_size, boot_image_update_type));
}
/* Compare BCT Sub hashes. */
R_TRY(boot0_accessor.GetHash(nand_hash, BctSize, work_buffer, work_buffer_size, Boot0Partition::BctSafeSub));
R_TRY(ValidateBctFileHash(boot0_accessor, Boot0Partition::BctSafeSub, nand_hash, work_buffer, work_buffer_size, boot_image_update_type));
/* Compare Package1 Normal/Sub hashes. */
R_TRY(GetFileHash(&size, file_hash, GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size));
R_TRY(boot1_accessor.GetHash(nand_hash, size, work_buffer, work_buffer_size, Boot1Partition::Package1SafeMain));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
R_TRY(boot1_accessor.GetHash(nand_hash, size, work_buffer, work_buffer_size, Boot1Partition::Package1SafeSub));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
/* Compare Package2 Normal/Sub hashes. */
R_TRY(GetFileHash(&size, file_hash, GetPackage2Path(boot_image_update_type), work_buffer, work_buffer_size));
R_TRY(GetPackage2Hash(nand_hash, size, work_buffer, work_buffer_size, Package2Type::SafeMain));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
R_TRY(GetPackage2Hash(nand_hash, size, work_buffer, work_buffer_size, Package2Type::SafeSub));
R_TRY(CompareHash(file_hash, nand_hash, sizeof(file_hash)));
}
return ResultSuccess();
}
Result UpdateBootImagesNormal(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Mount the boot image package. */
const char *mount_name = GetMountName();
R_TRY_CATCH(fs::MountSystemData(mount_name, data_id)) {
R_CONVERT(fs::ResultTargetNotFound, ResultBootImagePackageNotFound())
} R_END_TRY_CATCH;
ON_SCOPE_EXIT { fs::Unmount(mount_name); };
{
Boot0Accessor boot0_accessor;
R_TRY(boot0_accessor.Initialize());
ON_SCOPE_EXIT { boot0_accessor.Finalize(); };
/* Detect the use of custom public key. */
/* If custom public key is present, we want to update BCT Sub but not Main */
bool custom_public_key = false;
R_TRY(boot0_accessor.DetectCustomPublicKey(std::addressof(custom_public_key), work_buffer, boot_image_update_type));
/* Write Package1 sub. */
R_TRY(boot0_accessor.Clear(work_buffer, work_buffer_size, Boot0Partition::Package1NormalSub));
R_TRY(boot0_accessor.Write(GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size, Boot0Partition::Package1NormalSub));
/* Write Package2 sub. */
R_TRY(WritePackage2(work_buffer, work_buffer_size, Package2Type::NormalSub, boot_image_update_type));
/* Write BCT sub + BCT main, in that order. */
{
void *bct = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + 0);
void *work = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + BctSize);
size_t size;
R_TRY(ReadFile(&size, bct, BctSize, GetBctPath(boot_image_update_type)));
if (HasEks(boot_image_update_type)) {
R_TRY(boot0_accessor.UpdateEks(bct, work));
}
/* Only preserve autorcm if on a unit with unpatched rcm bug. */
if (HasAutoRcmPreserve(boot_image_update_type) && !exosphere::IsRcmBugPatched()) {
R_TRY(boot0_accessor.PreserveAutoRcm(bct, work, Boot0Partition::BctNormalSub));
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctNormalSub));
if (!custom_public_key) {
R_TRY(boot0_accessor.PreserveAutoRcm(bct, work, Boot0Partition::BctNormalMain));
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctNormalMain));
}
} else {
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctNormalSub));
if (!custom_public_key) {
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctNormalMain));
}
}
}
/* Write Package2 main. */
R_TRY(WritePackage2(work_buffer, work_buffer_size, Package2Type::NormalMain, boot_image_update_type));
/* Write Package1 main. */
R_TRY(boot0_accessor.Clear(work_buffer, work_buffer_size, Boot0Partition::Package1NormalMain));
R_TRY(boot0_accessor.Write(GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size, Boot0Partition::Package1NormalMain));
}
return ResultSuccess();
}
Result UpdateBootImagesSafe(ncm::SystemDataId data_id, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Mount the boot image package. */
const char *mount_name = GetMountName();
R_TRY_CATCH(fs::MountSystemData(mount_name, data_id)) {
R_CONVERT(fs::ResultTargetNotFound, ResultBootImagePackageNotFound())
} R_END_TRY_CATCH;
ON_SCOPE_EXIT { fs::Unmount(mount_name); };
{
Boot0Accessor boot0_accessor;
R_TRY(boot0_accessor.Initialize());
ON_SCOPE_EXIT { boot0_accessor.Finalize(); };
Boot1Accessor boot1_accessor;
R_TRY(boot1_accessor.Initialize());
ON_SCOPE_EXIT { boot1_accessor.Finalize(); };
/* Detect the use of custom public key. */
/* If custom public key is present, we want to update BCT Sub but not Main */
bool custom_public_key = false;
R_TRY(boot0_accessor.DetectCustomPublicKey(std::addressof(custom_public_key), work_buffer, boot_image_update_type));
/* Write Package1 sub. */
R_TRY(boot1_accessor.Clear(work_buffer, work_buffer_size, Boot1Partition::Package1SafeSub));
R_TRY(boot1_accessor.Write(GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size, Boot1Partition::Package1SafeSub));
/* Write Package2 sub. */
R_TRY(WritePackage2(work_buffer, work_buffer_size, Package2Type::SafeSub, boot_image_update_type));
/* Write BCT sub + BCT main, in that order. */
{
void *bct = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + 0);
void *work = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + BctSize);
size_t size;
R_TRY(ReadFile(&size, bct, BctSize, GetBctPath(boot_image_update_type)));
if (HasEks(boot_image_update_type)) {
R_TRY(boot0_accessor.UpdateEks(bct, work));
}
/* Only preserve autorcm if on a unit with unpatched rcm bug. */
if (HasAutoRcmPreserve(boot_image_update_type) && !exosphere::IsRcmBugPatched()) {
R_TRY(boot0_accessor.PreserveAutoRcm(bct, work, Boot0Partition::BctSafeSub));
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctSafeSub));
if (!custom_public_key) {
R_TRY(boot0_accessor.PreserveAutoRcm(bct, work, Boot0Partition::BctSafeMain));
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctSafeMain));
}
} else {
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctSafeSub));
if (!custom_public_key) {
R_TRY(boot0_accessor.Write(bct, BctSize, Boot0Partition::BctSafeMain));
}
}
}
/* Write Package2 main. */
R_TRY(WritePackage2(work_buffer, work_buffer_size, Package2Type::SafeMain, boot_image_update_type));
/* Write Package1 main. */
R_TRY(boot1_accessor.Clear(work_buffer, work_buffer_size, Boot1Partition::Package1SafeMain));
R_TRY(boot1_accessor.Write(GetPackage1Path(boot_image_update_type), work_buffer, work_buffer_size, Boot1Partition::Package1SafeMain));
}
return ResultSuccess();
}
Result SetVerificationNeeded(BootModeType mode, void *work_buffer, size_t work_buffer_size, bool needed) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Initialize boot0 save accessor. */
BisSave save;
R_TRY(save.Initialize(work_buffer, work_buffer_size));
ON_SCOPE_EXIT { save.Finalize(); };
/* Load save from NAND. */
R_TRY(save.Load());
/* Set whether we need to verify, then save to nand. */
save.SetNeedsVerification(mode, needed);
R_TRY(save.Save());
return ResultSuccess();
}
Result ValidateBctFileHash(Boot0Accessor &accessor, Boot0Partition which, const void *stored_hash, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
void *bct = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + 0);
void *work = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(work_buffer) + BctSize);
size_t size;
R_TRY(ReadFile(&size, bct, BctSize, GetBctPath(boot_image_update_type)));
if (HasEks(boot_image_update_type)) {
R_TRY(accessor.UpdateEks(bct, work));
}
if (HasAutoRcmPreserve(boot_image_update_type)) {
R_TRY(accessor.PreserveAutoRcm(bct, work, which));
}
u8 file_hash[crypto::Sha256Generator::HashSize];
crypto::GenerateSha256Hash(file_hash, sizeof(file_hash), bct, BctSize);
return CompareHash(file_hash, stored_hash, sizeof(file_hash));
}
Result GetPackage2Hash(void *dst_hash, size_t package2_size, void *work_buffer, size_t work_buffer_size, Package2Type which) {
Package2Accessor accessor(which);
R_TRY(accessor.Initialize());
ON_SCOPE_EXIT { accessor.Finalize(); };
return accessor.GetHash(dst_hash, package2_size, work_buffer, work_buffer_size, Package2Partition::Package2);
}
Result WritePackage2(void *work_buffer, size_t work_buffer_size, Package2Type which, BootImageUpdateType boot_image_update_type) {
Package2Accessor accessor(which);
R_TRY(accessor.Initialize());
ON_SCOPE_EXIT { accessor.Finalize(); };
return accessor.Write(GetPackage2Path(boot_image_update_type), work_buffer, work_buffer_size, Package2Partition::Package2);
}
Result CompareHash(const void *lhs, const void *rhs, size_t size) {
R_UNLESS(crypto::IsSameBytes(lhs, rhs, size), ResultNeedsRepairBootImages());
return ResultSuccess();
}
}
BootImageUpdateType GetBootImageUpdateType(spl::HardwareType hw_type) {
switch (hw_type) {
case spl::HardwareType::Icosa:
case spl::HardwareType::Copper:
return BootImageUpdateType::Erista;
case spl::HardwareType::Hoag:
case spl::HardwareType::Iowa:
case spl::HardwareType::Calcio:
case spl::HardwareType::Aula:
return BootImageUpdateType::Mariko;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
BootImageUpdateType GetBootImageUpdateType(int boot_image_update_type) {
switch (boot_image_update_type) {
case 0:
return BootImageUpdateType::Erista;
case 1:
return BootImageUpdateType::Mariko;
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
Result GetBootImagePackageId(ncm::SystemDataId *out_data_id, BootModeType mode, void *work_buffer, size_t work_buffer_size) {
/* Ensure we can read content metas. */
constexpr size_t MaxContentMetas = 0x40;
AMS_ABORT_UNLESS(work_buffer_size >= sizeof(ncm::ContentMetaKey) * MaxContentMetas);
/* Open NAND System meta database, list contents. */
ncm::ContentMetaDatabase db;
R_TRY(ncm::OpenContentMetaDatabase(std::addressof(db), ncm::StorageId::BuiltInSystem));
ncm::ContentMetaKey *keys = reinterpret_cast<ncm::ContentMetaKey *>(work_buffer);
const auto content_meta_type = GetContentMetaType(mode);
auto count = db.ListContentMeta(keys, MaxContentMetas, content_meta_type);
R_UNLESS(count.total > 0, ResultBootImagePackageNotFound());
/* Output is sorted, return the lowest valid exfat entry. */
if (count.total > 1) {
for (auto i = 0; i < count.total; i++) {
u8 attr;
R_TRY(db.GetAttributes(std::addressof(attr), keys[i]));
if (attr & ncm::ContentMetaAttribute_IncludesExFatDriver) {
out_data_id->value = keys[i].id;
return ResultSuccess();
}
}
}
/* If there's only one entry or no exfat entries, return that entry. */
out_data_id->value = keys[0].id;
return ResultSuccess();
}
Result MarkVerifyingRequired(BootModeType mode, void *work_buffer, size_t work_buffer_size) {
return SetVerificationNeeded(mode, work_buffer, work_buffer_size, true);
}
Result MarkVerified(BootModeType mode, void *work_buffer, size_t work_buffer_size) {
return SetVerificationNeeded(mode, work_buffer, work_buffer_size, false);
}
Result UpdateBootImagesFromPackage(ncm::SystemDataId data_id, BootModeType mode, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
switch (mode) {
case BootModeType::Normal:
return UpdateBootImagesNormal(data_id, work_buffer, work_buffer_size, boot_image_update_type);
case BootModeType::Safe:
return UpdateBootImagesSafe(data_id, work_buffer, work_buffer_size, boot_image_update_type);
AMS_UNREACHABLE_DEFAULT_CASE();
}
}
Result VerifyBootImagesAndRepairIfNeeded(bool *out_repaired_normal, bool *out_repaired_safe, void *work_buffer, size_t work_buffer_size, BootImageUpdateType boot_image_update_type) {
/* Always set output to false before doing anything else. */
*out_repaired_normal = false;
*out_repaired_safe = false;
/* Ensure work buffer is big enough for us to do what we want to do. */
R_TRY(ValidateWorkBuffer(work_buffer, work_buffer_size));
/* Get verification state from NAND. */
VerificationState verification_state;
R_TRY(GetVerificationState(&verification_state, work_buffer, work_buffer_size));
/* If we don't need to verify anything, we're done. */
if (!verification_state.needs_verify_normal && !verification_state.needs_verify_safe) {
return ResultSuccess();
}
/* Get a session to ncm. */
sm::ScopedServiceHolder<ncm::Initialize, ncm::Finalize> ncm_holder;
R_ABORT_UNLESS(ncm_holder.GetResult());
/* Verify normal, verify safe as needed. */
if (verification_state.needs_verify_normal) {
R_TRY_CATCH(VerifyBootImagesAndRepairIfNeeded(out_repaired_normal, BootModeType::Normal, work_buffer, work_buffer_size, boot_image_update_type)) {
R_CATCH(ResultBootImagePackageNotFound) { /* Nintendo considers failure to locate bip a success. TODO: don't do that? */ }
} R_END_TRY_CATCH;
}
if (verification_state.needs_verify_safe) {
R_TRY_CATCH(VerifyBootImagesAndRepairIfNeeded(out_repaired_safe, BootModeType::Safe, work_buffer, work_buffer_size, boot_image_update_type)) {
R_CATCH(ResultBootImagePackageNotFound) { /* Nintendo considers failure to locate bip a success. TODO: don't do that? */ }
} R_END_TRY_CATCH;
}
return ResultSuccess();
}
}