Atmosphere/libraries/libmesosphere/source/kern_k_memory_layout.cpp
2020-07-31 14:50:52 -07:00

287 lines
16 KiB
C++

/*
* Copyright (c) 2018-2020 Atmosphère-NX
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <mesosphere.hpp>
namespace ams::kern {
bool KMemoryRegionTree::Insert(uintptr_t address, size_t size, u32 type_id, u32 new_attr, u32 old_attr) {
/* Locate the memory region that contains the address. */
auto it = this->FindContainingRegion(address);
/* We require that the old attr is correct. */
if (it->GetAttributes() != old_attr) {
return false;
}
/* We further require that the region can be split from the old region. */
const uintptr_t inserted_region_end = address + size;
const uintptr_t inserted_region_last = inserted_region_end - 1;
if (it->GetLastAddress() < inserted_region_last) {
return false;
}
/* Further, we require that the type id is a valid transformation. */
if (!it->CanDerive(type_id)) {
return false;
}
/* Cache information from the region before we remove it. */
KMemoryRegion *cur_region = std::addressof(*it);
const uintptr_t old_address = it->GetAddress();
const size_t old_size = it->GetSize();
const uintptr_t old_end = old_address + old_size;
const uintptr_t old_last = old_end - 1;
const uintptr_t old_pair = it->GetPairAddress();
const u32 old_type = it->GetType();
/* Erase the existing region from the tree. */
this->erase(it);
/* If we need to insert a region before the region, do so. */
if (old_address != address) {
new (cur_region) KMemoryRegion(old_address, address - old_address, old_pair, old_attr, old_type);
this->insert(*cur_region);
cur_region = KMemoryLayout::GetMemoryRegionAllocator().Allocate();
}
/* Insert a new region. */
const uintptr_t new_pair = (old_pair != std::numeric_limits<uintptr_t>::max()) ? old_pair + (address - old_address) : old_pair;
new (cur_region) KMemoryRegion(address, size, new_pair, new_attr, type_id);
this->insert(*cur_region);
/* If we need to insert a region after the region, do so. */
if (old_last != inserted_region_last) {
const uintptr_t after_pair = (old_pair != std::numeric_limits<uintptr_t>::max()) ? old_pair + (inserted_region_end - old_address) : old_pair;
this->insert(*KMemoryLayout::GetMemoryRegionAllocator().Create(inserted_region_end, old_end - inserted_region_end, after_pair, old_attr, old_type));
}
return true;
}
KVirtualAddress KMemoryRegionTree::GetRandomAlignedRegion(size_t size, size_t alignment, u32 type_id) {
/* We want to find the total extents of the type id. */
const auto extents = this->GetDerivedRegionExtents(type_id);
/* Ensure that our alignment is correct. */
MESOSPHERE_INIT_ABORT_UNLESS(util::IsAligned(extents.GetAddress(), alignment));
const uintptr_t first_address = extents.GetAddress();
const uintptr_t last_address = extents.GetLastAddress();
while (true) {
const uintptr_t candidate = util::AlignDown(KSystemControl::Init::GenerateRandomRange(first_address, last_address), alignment);
/* Ensure that the candidate doesn't overflow with the size. */
if (!(candidate < candidate + size)) {
continue;
}
const uintptr_t candidate_last = candidate + size - 1;
/* Ensure that the candidate fits within the region. */
if (candidate_last > last_address) {
continue;
}
/* Locate the candidate region, and ensure it fits. */
const KMemoryRegion *candidate_region = std::addressof(*this->FindContainingRegion(candidate));
if (candidate_last > candidate_region->GetLastAddress()) {
continue;
}
/* Ensure that the region has the correct type id. */
if (candidate_region->GetType() != type_id)
continue;
return candidate;
}
}
void KMemoryLayout::InitializeLinearMemoryRegionTrees(KPhysicalAddress aligned_linear_phys_start, KVirtualAddress linear_virtual_start) {
/* Set static differences. */
s_linear_phys_to_virt_diff = GetInteger(linear_virtual_start) - GetInteger(aligned_linear_phys_start);
s_linear_virt_to_phys_diff = GetInteger(aligned_linear_phys_start) - GetInteger(linear_virtual_start);
/* Initialize linear trees. */
for (auto &region : GetPhysicalMemoryRegionTree()) {
if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
continue;
}
GetPhysicalLinearMemoryRegionTree().insert(*GetMemoryRegionAllocator().Create(region.GetAddress(), region.GetSize(), region.GetAttributes(), region.GetType()));
}
for (auto &region : GetVirtualMemoryRegionTree()) {
if (!region.IsDerivedFrom(KMemoryRegionType_Dram)) {
continue;
}
GetVirtualLinearMemoryRegionTree().insert(*GetMemoryRegionAllocator().Create(region.GetAddress(), region.GetSize(), region.GetAttributes(), region.GetType()));
}
}
namespace init {
namespace {
constexpr PageTableEntry KernelRwDataAttribute(PageTableEntry::Permission_KernelRW, PageTableEntry::PageAttribute_NormalMemory, PageTableEntry::Shareable_InnerShareable, PageTableEntry::MappingFlag_Mapped);
constexpr size_t CarveoutAlignment = 0x20000;
constexpr size_t CarveoutSizeMax = 512_MB - CarveoutAlignment;
constexpr size_t CoreLocalRegionAlign = PageSize;
constexpr size_t CoreLocalRegionSize = PageSize * (1 + cpu::NumCores);
constexpr size_t CoreLocalRegionSizeWithGuards = CoreLocalRegionSize + 2 * PageSize;
constexpr size_t CoreLocalRegionBoundsAlign = 1_GB;
static_assert(CoreLocalRegionSize == sizeof(KCoreLocalRegion));
KVirtualAddress GetCoreLocalRegionVirtualAddress() {
while (true) {
const uintptr_t candidate_start = GetInteger(KMemoryLayout::GetVirtualMemoryRegionTree().GetRandomAlignedRegion(CoreLocalRegionSizeWithGuards, CoreLocalRegionAlign, KMemoryRegionType_None));
const uintptr_t candidate_end = candidate_start + CoreLocalRegionSizeWithGuards;
const uintptr_t candidate_last = candidate_end - 1;
const KMemoryRegion *containing_region = std::addressof(*KMemoryLayout::GetVirtualMemoryRegionTree().FindContainingRegion(candidate_start));
if (candidate_last > containing_region->GetLastAddress()) {
continue;
}
if (containing_region->GetType() != KMemoryRegionType_None) {
continue;
}
if (util::AlignDown(candidate_start, CoreLocalRegionBoundsAlign) != util::AlignDown(candidate_last, CoreLocalRegionBoundsAlign)) {
continue;
}
if (containing_region->GetAddress() > util::AlignDown(candidate_start, CoreLocalRegionBoundsAlign)) {
continue;
}
if (util::AlignUp(candidate_last, CoreLocalRegionBoundsAlign) - 1 > containing_region->GetLastAddress()) {
continue;
}
return candidate_start + PageSize;
}
}
void InsertPoolPartitionRegionIntoBothTrees(size_t start, size_t size, KMemoryRegionType phys_type, KMemoryRegionType virt_type, u32 &cur_attr) {
const u32 attr = cur_attr++;
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetPhysicalMemoryRegionTree().Insert(start, size, phys_type, attr));
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetVirtualMemoryRegionTree().Insert(KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstRegionByTypeAttr(phys_type, attr)->GetPairAddress(), size, virt_type, attr));
}
}
void SetupCoreLocalRegionMemoryRegions(KInitialPageTable &page_table, KInitialPageAllocator &page_allocator) {
const KVirtualAddress core_local_virt_start = GetCoreLocalRegionVirtualAddress();
MESOSPHERE_INIT_ABORT_UNLESS(KMemoryLayout::GetVirtualMemoryRegionTree().Insert(GetInteger(core_local_virt_start), CoreLocalRegionSize, KMemoryRegionType_CoreLocal));
/* Allocate a page for each core. */
KPhysicalAddress core_local_region_start_phys[cpu::NumCores] = {};
for (size_t i = 0; i < cpu::NumCores; i++) {
core_local_region_start_phys[i] = page_allocator.Allocate();
}
/* Allocate an l1 page table for each core. */
KPhysicalAddress core_l1_ttbr1_phys[cpu::NumCores] = {};
core_l1_ttbr1_phys[0] = util::AlignDown(cpu::GetTtbr1El1(), PageSize);
for (size_t i = 1; i < cpu::NumCores; i++) {
core_l1_ttbr1_phys[i] = page_allocator.Allocate();
std::memcpy(reinterpret_cast<void *>(GetInteger(core_l1_ttbr1_phys[i])), reinterpret_cast<void *>(GetInteger(core_l1_ttbr1_phys[0])), PageSize);
}
/* Use the l1 page table for each core to map the core local region for each core. */
for (size_t i = 0; i < cpu::NumCores; i++) {
KInitialPageTable temp_pt(core_l1_ttbr1_phys[i], KInitialPageTable::NoClear{});
temp_pt.Map(core_local_virt_start, PageSize, core_local_region_start_phys[i], KernelRwDataAttribute, page_allocator);
for (size_t j = 0; j < cpu::NumCores; j++) {
temp_pt.Map(core_local_virt_start + (j + 1) * PageSize, PageSize, core_local_region_start_phys[j], KernelRwDataAttribute, page_allocator);
}
/* Setup the InitArguments. */
SetInitArguments(static_cast<s32>(i), core_local_region_start_phys[i], GetInteger(core_l1_ttbr1_phys[i]));
}
/* Ensure the InitArguments are flushed to cache. */
StoreInitArguments();
}
void SetupPoolPartitionMemoryRegions() {
/* Start by identifying the extents of the DRAM memory region. */
const auto dram_extents = KMemoryLayout::GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(KMemoryRegionType_Dram);
/* Get Application and Applet pool sizes. */
const size_t application_pool_size = KSystemControl::Init::GetApplicationPoolSize();
const size_t applet_pool_size = KSystemControl::Init::GetAppletPoolSize();
const size_t unsafe_system_pool_min_size = KSystemControl::Init::GetMinimumNonSecureSystemPoolSize();
/* Find the start of the kernel DRAM region. */
const uintptr_t kernel_dram_start = KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstDerivedRegion(KMemoryRegionType_DramKernel)->GetAddress();
MESOSPHERE_INIT_ABORT_UNLESS(util::IsAligned(kernel_dram_start, CarveoutAlignment));
/* Find the start of the pool partitions region. */
const uintptr_t pool_partitions_start = KMemoryLayout::GetPhysicalMemoryRegionTree().FindFirstRegionByTypeAttr(KMemoryRegionType_DramPoolPartition)->GetAddress();
/* Decide on starting addresses for our pools. */
const uintptr_t application_pool_start = dram_extents.GetEndAddress() - application_pool_size;
const uintptr_t applet_pool_start = application_pool_start - applet_pool_size;
const uintptr_t unsafe_system_pool_start = std::min(kernel_dram_start + CarveoutSizeMax, util::AlignDown(applet_pool_start - unsafe_system_pool_min_size, CarveoutAlignment));
const size_t unsafe_system_pool_size = applet_pool_start - unsafe_system_pool_start;
/* We want to arrange application pool depending on where the middle of dram is. */
const uintptr_t dram_midpoint = (dram_extents.GetAddress() + dram_extents.GetEndAddress()) / 2;
u32 cur_pool_attr = 0;
size_t total_overhead_size = 0;
if (dram_extents.GetEndAddress() <= dram_midpoint || dram_midpoint <= application_pool_start) {
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize(application_pool_size);
} else {
const size_t first_application_pool_size = dram_midpoint - application_pool_start;
const size_t second_application_pool_size = application_pool_start + application_pool_size - dram_midpoint;
InsertPoolPartitionRegionIntoBothTrees(application_pool_start, first_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
InsertPoolPartitionRegionIntoBothTrees(dram_midpoint, second_application_pool_size, KMemoryRegionType_DramApplicationPool, KMemoryRegionType_VirtualDramApplicationPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize(first_application_pool_size);
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize(second_application_pool_size);
}
/* Insert the applet pool. */
InsertPoolPartitionRegionIntoBothTrees(applet_pool_start, applet_pool_size, KMemoryRegionType_DramAppletPool, KMemoryRegionType_VirtualDramAppletPool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize(applet_pool_size);
/* Insert the nonsecure system pool. */
InsertPoolPartitionRegionIntoBothTrees(unsafe_system_pool_start, unsafe_system_pool_size, KMemoryRegionType_DramSystemNonSecurePool, KMemoryRegionType_VirtualDramSystemNonSecurePool, cur_pool_attr);
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize(unsafe_system_pool_size);
/* Insert the metadata pool. */
total_overhead_size += KMemoryManager::CalculateMetadataOverheadSize((unsafe_system_pool_start - pool_partitions_start) - total_overhead_size);
const uintptr_t metadata_pool_start = unsafe_system_pool_start - total_overhead_size;
const size_t metadata_pool_size = total_overhead_size;
u32 metadata_pool_attr = 0;
InsertPoolPartitionRegionIntoBothTrees(metadata_pool_start, metadata_pool_size, KMemoryRegionType_DramMetadataPool, KMemoryRegionType_VirtualDramMetadataPool, metadata_pool_attr);
/* Insert the system pool. */
const uintptr_t system_pool_size = metadata_pool_start - pool_partitions_start;
InsertPoolPartitionRegionIntoBothTrees(pool_partitions_start, system_pool_size, KMemoryRegionType_DramSystemPool, KMemoryRegionType_VirtualDramSystemPool, cur_pool_attr);
}
}
}