1
0
mirror of synced 2025-01-19 08:07:56 +01:00

Refactored advanced entropy operation into entropy operation

This commit is contained in:
mshwed 2019-06-27 14:09:41 -04:00
parent b99af58636
commit 1b161f997b
3 changed files with 346 additions and 423 deletions

41
package-lock.json generated
View File

@ -5353,8 +5353,7 @@
"ansi-regex": {
"version": "2.1.1",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"aproba": {
"version": "1.2.0",
@ -5375,14 +5374,12 @@
"balanced-match": {
"version": "1.0.0",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"brace-expansion": {
"version": "1.1.11",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"balanced-match": "^1.0.0",
"concat-map": "0.0.1"
@ -5397,20 +5394,17 @@
"code-point-at": {
"version": "1.1.0",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"concat-map": {
"version": "0.0.1",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"console-control-strings": {
"version": "1.1.0",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"core-util-is": {
"version": "1.0.2",
@ -5527,8 +5521,7 @@
"inherits": {
"version": "2.0.3",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"ini": {
"version": "1.3.5",
@ -5540,7 +5533,6 @@
"version": "1.0.0",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"number-is-nan": "^1.0.0"
}
@ -5555,7 +5547,6 @@
"version": "3.0.4",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"brace-expansion": "^1.1.7"
}
@ -5563,14 +5554,12 @@
"minimist": {
"version": "0.0.8",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"minipass": {
"version": "2.3.5",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"safe-buffer": "^5.1.2",
"yallist": "^3.0.0"
@ -5589,7 +5578,6 @@
"version": "0.5.1",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"minimist": "0.0.8"
}
@ -5670,8 +5658,7 @@
"number-is-nan": {
"version": "1.0.1",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"object-assign": {
"version": "4.1.1",
@ -5683,7 +5670,6 @@
"version": "1.4.0",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"wrappy": "1"
}
@ -5769,8 +5755,7 @@
"safe-buffer": {
"version": "5.1.2",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"safer-buffer": {
"version": "2.1.2",
@ -5806,7 +5791,6 @@
"version": "1.0.2",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"code-point-at": "^1.0.0",
"is-fullwidth-code-point": "^1.0.0",
@ -5826,7 +5810,6 @@
"version": "3.0.1",
"bundled": true,
"dev": true,
"optional": true,
"requires": {
"ansi-regex": "^2.0.0"
}
@ -5870,14 +5853,12 @@
"wrappy": {
"version": "1.0.2",
"bundled": true,
"dev": true,
"optional": true
"dev": true
},
"yallist": {
"version": "3.0.3",
"bundled": true,
"dev": true,
"optional": true
"dev": true
}
}
},

View File

@ -1,361 +0,0 @@
/**
* @author mshwed [m@ttshwed.com]
* @copyright Crown Copyright 2019
* @license Apache-2.0
*/
import * as d3temp from "d3";
import * as nodomtemp from "nodom";
import Operation from "../Operation";
import Utils from "../Utils";
const d3 = d3temp.default ? d3temp.default : d3temp;
const nodom = nodomtemp.default ? nodomtemp.default: nodomtemp;
/**
* Advanced Entropy operation
*/
class AdvancedEntropy extends Operation {
/**
* AdvancedEntropy constructor
*/
constructor() {
super();
this.name = "Advanced Entropy";
this.module = "Default";
this.description = "Shannon Entropy, in the context of information theory, is a measure of the rate at which information is produced by a source of data. It can be used, in a broad sense, to detect whether data is likely to be structured or unstructured. 8 is the maximum, representing highly unstructured, 'random' data. English language text usually falls somewhere between 3.5 and 5. Properly encrypted or compressed data should have an entropy of over 7.5.";
this.infoURL = "https://wikipedia.org/wiki/Entropy_(information_theory)";
this.inputType = "byteArray";
this.outputType = "html";
this.args = [
{
"name": "Visualization",
"type": "option",
"value": ["Histogram (Bar)", "Histogram (Line)", "Curve", "Image"]
}
];
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} input
* @returns {frequency}
*/
calculateShannonEntropy(input) {
const prob = [],
uniques = input.unique(),
str = Utils.byteArrayToChars(input);
let i;
for (i = 0; i < uniques.length; i++) {
prob.push(str.count(Utils.chr(uniques[i])) / input.length);
}
let entropy = 0,
p;
for (i = 0; i < prob.length; i++) {
p = prob[i];
entropy += p * Math.log(p) / Math.log(2);
}
return -entropy;
}
/**
*
* @param inputBytes
* @returns {entropyData}
*/
calculateScanningEntropy(inputBytes, binWidth) {
const entropyData = [];
if (inputBytes.length < 256) binWidth = 8;
else binWidth = 256;
for (let bytePos = 0; bytePos < inputBytes.length; bytePos+=binWidth) {
const block = inputBytes.slice(bytePos, bytePos+binWidth);
entropyData.push(this.calculateShannonEntropy(block));
}
return { entropyData, binWidth };
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {object} svg
* @param {function} xScale
* @param {function} yScale
* @param {integer} svgHeight
* @param {integer} svgWidth
* @param {object} margins
* @param {string} xTitle
* @param {string} yTitle
* @returns {undefined}
*/
createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, title, xTitle, yTitle) {
// Axes
const yAxis = d3.axisLeft()
.scale(yScale);
const xAxis = d3.axisBottom()
.scale(xScale);
svg.append("g")
.attr("transform", `translate(0, ${svgHeight - margins.bottom})`)
.call(xAxis);
svg.append("g")
.attr("transform", `translate(${margins.left},0)`)
.call(yAxis);
// Axes labels
svg.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 0 - margins.left)
.attr("x", 0 - (svgHeight / 2))
.attr("dy", "1em")
.style("text-anchor", "middle")
.text(yTitle);
svg.append("text")
.attr("transform", `translate(${svgWidth / 2}, ${svgHeight - margins.bottom + 40})`)
.style("text-anchor", "middle")
.text(xTitle);
// Add title
svg.append("text")
.attr("transform", `translate(${svgWidth / 2}, ${margins.top - 10})`)
.style("text-anchor", "middle")
.text(title);
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} inputBytes
* @returns {frequency}
*/
calculateByteFrequency(inputBytes) {
const byteFrequency = [];
for (let i = 0; i < 256; i++) {
if (inputBytes.length > 0) {
let count = 0;
for (const byte of inputBytes) {
if (byte === i) count++;
}
byteFrequency.push(count / inputBytes.length);
} else {
byteFrequency.push(0);
}
}
return byteFrequency;
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} byteFrequency
* @returns {frequency}
*/
createByteFrequencyLineHistogram(byteFrequency) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yScale = d3.scaleLinear()
.domain([0, d3.max(byteFrequency, d => d)])
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, byteFrequency.length - 1])
.range([margins.left, svgWidth - margins.right]);
const line = d3.line()
.x((_, i) => xScale(i))
.y(d => yScale(d))
.curve(d3.curveMonotoneX);
svg.append("path")
.datum(byteFrequency)
.attr("fill", "none")
.attr("stroke", "steelblue")
.attr("d", line);
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "", "Byte", "Byte Frequency");
return svg._groups[0][0].outerHTML;
}
/**
* Creates a byte frequency histogram
*
* @param {byteArray} byteFrequency
* @returns {HTML}
*/
createByteFrequencyBarHistogram(byteFrequency) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500,
binWidth = 1;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yExtent = d3.extent(byteFrequency, d => d);
const yScale = d3.scaleLinear()
.domain(yExtent)
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, byteFrequency.length - 1])
.range([margins.left - binWidth, svgWidth - margins.right]);
svg.selectAll("rect")
.data(byteFrequency)
.enter().append("rect")
.attr("x", (_, i) => xScale(i) + binWidth)
.attr("y", dataPoint => yScale(dataPoint))
.attr("width", binWidth)
.attr("height", dataPoint => yScale(yExtent[0]) - yScale(dataPoint))
.attr("fill", "blue");
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "", "Byte", "Byte Frequency");
return svg._groups[0][0].outerHTML;
}
/**
* Creates a byte frequency histogram
*
* @param {byteArray} input
* @param {number} blockSize
* @returns {HTML}
*/
createEntropyCurve(entropyData) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yScale = d3.scaleLinear()
.domain([0, d3.max(entropyData, d => d)])
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, entropyData.length])
.range([margins.left, svgWidth - margins.right]);
const line = d3.line()
.x((_, i) => xScale(i))
.y(d => yScale(d))
.curve(d3.curveMonotoneX);
if (entropyData.length > 0) {
svg.append("path")
.datum(entropyData)
.attr("d", line);
svg.selectAll("path").attr("fill", "none").attr("stroke", "steelblue");
}
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "Scanning Entropy", "Block", "Entropy");
return svg._groups[0][0].outerHTML;
}
/**
* Creates an image representation of the entropy
*
* @param {byteArray} input
* @param {number} blockSize
* @returns {HTML}
*/
createEntropyImage(entropyData) {
const svgHeight = 100,
svgWidth = 100,
cellSize = 1,
nodes = [];
for (let i = 0; i < entropyData.length; i++) {
nodes.push({
x: i % svgWidth,
y: Math.floor(i / svgWidth),
entropy: entropyData[i]
});
}
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const greyScale = d3.scaleLinear()
.domain([0, d3.max(entropyData, d => d)])
.range(["#000000", "#FFFFFF"])
.interpolate(d3.interpolateRgb);
svg
.selectAll("rect")
.data(nodes)
.enter().append("rect")
.attr("x", d => d.x * cellSize)
.attr("y", d => d.y * cellSize)
.attr("width", cellSize)
.attr("height", cellSize)
.style("fill", d => greyScale(d.entropy));
return svg._groups[0][0].outerHTML;
}
/**
* @param {byteArray} input
* @param {Object[]} args
* @returns {html}
*/
run(input, args) {
const visualizationType = args[0];
if (visualizationType === "Histogram (Bar)") {
return this.createByteFrequencyBarHistogram(this.calculateByteFrequency(input));
} else if (visualizationType === "Histogram (Line)") {
return this.createByteFrequencyLineHistogram(this.calculateByteFrequency(input));
} else if (visualizationType === "Curve") {
return this.createEntropyCurve(this.calculateScanningEntropy(input).entropyData);
} else if (visualizationType === "Image") {
return this.createEntropyImage(this.calculateScanningEntropy(input).entropyData);
}
}
}
export default AdvancedEntropy;

View File

@ -4,9 +4,15 @@
* @license Apache-2.0
*/
import * as d3temp from "d3";
import * as nodomtemp from "nodom";
import Operation from "../Operation";
import Utils from "../Utils";
const d3 = d3temp.default ? d3temp.default : d3temp;
const nodom = nodomtemp.default ? nodomtemp.default: nodomtemp;
/**
* Entropy operation
*/
@ -23,22 +29,28 @@ class Entropy extends Operation {
this.description = "Shannon Entropy, in the context of information theory, is a measure of the rate at which information is produced by a source of data. It can be used, in a broad sense, to detect whether data is likely to be structured or unstructured. 8 is the maximum, representing highly unstructured, 'random' data. English language text usually falls somewhere between 3.5 and 5. Properly encrypted or compressed data should have an entropy of over 7.5.";
this.infoURL = "https://wikipedia.org/wiki/Entropy_(information_theory)";
this.inputType = "byteArray";
this.outputType = "number";
this.presentType = "html";
this.args = [];
this.outputType = "html";
this.args = [
{
"name": "Visualisation",
"type": "option",
"value": ["Shannon", "Histogram (Bar)", "Histogram (Line)", "Curve", "Image"]
}
];
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} input
* @param {Object[]} args
* @returns {number}
* @returns {frequency}
*/
run(input, args) {
calculateShannonEntropy(input) {
const prob = [],
uniques = input.unique(),
str = Utils.byteArrayToChars(input);
let i;
let i;
for (i = 0; i < uniques.length; i++) {
prob.push(str.count(Utils.chr(uniques[i])) / input.length);
}
@ -54,44 +66,335 @@ class Entropy extends Operation {
return -entropy;
}
/**
*
* @param inputBytes
* @returns {entropyData}
*/
calculateScanningEntropy(inputBytes, binWidth) {
const entropyData = [];
if (inputBytes.length < 256) binWidth = 8;
else binWidth = 256;
for (let bytePos = 0; bytePos < inputBytes.length; bytePos+=binWidth) {
const block = inputBytes.slice(bytePos, bytePos+binWidth);
entropyData.push(this.calculateShannonEntropy(block));
}
return { entropyData, binWidth };
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {object} svg
* @param {function} xScale
* @param {function} yScale
* @param {integer} svgHeight
* @param {integer} svgWidth
* @param {object} margins
* @param {string} xTitle
* @param {string} yTitle
* @returns {undefined}
*/
createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, title, xTitle, yTitle) {
// Axes
const yAxis = d3.axisLeft()
.scale(yScale);
const xAxis = d3.axisBottom()
.scale(xScale);
svg.append("g")
.attr("transform", `translate(0, ${svgHeight - margins.bottom})`)
.call(xAxis);
svg.append("g")
.attr("transform", `translate(${margins.left},0)`)
.call(yAxis);
// Axes labels
svg.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 0 - margins.left)
.attr("x", 0 - (svgHeight / 2))
.attr("dy", "1em")
.style("text-anchor", "middle")
.text(yTitle);
svg.append("text")
.attr("transform", `translate(${svgWidth / 2}, ${svgHeight - margins.bottom + 40})`)
.style("text-anchor", "middle")
.text(xTitle);
// Add title
svg.append("text")
.attr("transform", `translate(${svgWidth / 2}, ${margins.top - 10})`)
.style("text-anchor", "middle")
.text(title);
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} inputBytes
* @returns {frequency}
*/
calculateByteFrequency(inputBytes) {
const byteFrequency = [];
for (let i = 0; i < 256; i++) {
if (inputBytes.length > 0) {
let count = 0;
for (const byte of inputBytes) {
if (byte === i) count++;
}
byteFrequency.push(count / inputBytes.length);
} else {
byteFrequency.push(0);
}
}
return byteFrequency;
}
/**
* Calculates the frequency of bytes in the input.
*
* @param {byteArray} byteFrequency
* @returns {frequency}
*/
createByteFrequencyLineHistogram(byteFrequency) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yScale = d3.scaleLinear()
.domain([0, d3.max(byteFrequency, d => d)])
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, byteFrequency.length - 1])
.range([margins.left, svgWidth - margins.right]);
const line = d3.line()
.x((_, i) => xScale(i))
.y(d => yScale(d))
.curve(d3.curveMonotoneX);
svg.append("path")
.datum(byteFrequency)
.attr("fill", "none")
.attr("stroke", "steelblue")
.attr("d", line);
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "", "Byte", "Byte Frequency");
return svg._groups[0][0].outerHTML;
}
/**
* Creates a byte frequency histogram
*
* @param {byteArray} byteFrequency
* @returns {HTML}
*/
createByteFrequencyBarHistogram(byteFrequency) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500,
binWidth = 1;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yExtent = d3.extent(byteFrequency, d => d);
const yScale = d3.scaleLinear()
.domain(yExtent)
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, byteFrequency.length - 1])
.range([margins.left - binWidth, svgWidth - margins.right]);
svg.selectAll("rect")
.data(byteFrequency)
.enter().append("rect")
.attr("x", (_, i) => xScale(i) + binWidth)
.attr("y", dataPoint => yScale(dataPoint))
.attr("width", binWidth)
.attr("height", dataPoint => yScale(yExtent[0]) - yScale(dataPoint))
.attr("fill", "blue");
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "", "Byte", "Byte Frequency");
return svg._groups[0][0].outerHTML;
}
/**
* Creates a byte frequency histogram
*
* @param {byteArray} input
* @param {number} blockSize
* @returns {HTML}
*/
createEntropyCurve(entropyData) {
const margins = { top: 30, right: 20, bottom: 50, left: 30 };
const svgWidth = 500,
svgHeight = 500;
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const yScale = d3.scaleLinear()
.domain([0, d3.max(entropyData, d => d)])
.range([svgHeight - margins.bottom, margins.top]);
const xScale = d3.scaleLinear()
.domain([0, entropyData.length])
.range([margins.left, svgWidth - margins.right]);
const line = d3.line()
.x((_, i) => xScale(i))
.y(d => yScale(d))
.curve(d3.curveMonotoneX);
if (entropyData.length > 0) {
svg.append("path")
.datum(entropyData)
.attr("d", line);
svg.selectAll("path").attr("fill", "none").attr("stroke", "steelblue");
}
this.createAxes(svg, xScale, yScale, svgHeight, svgWidth, margins, "Scanning Entropy", "Block", "Entropy");
return svg._groups[0][0].outerHTML;
}
/**
* Creates an image representation of the entropy
*
* @param {byteArray} input
* @param {number} blockSize
* @returns {HTML}
*/
createEntropyImage(entropyData) {
const svgHeight = 100,
svgWidth = 100,
cellSize = 1,
nodes = [];
for (let i = 0; i < entropyData.length; i++) {
nodes.push({
x: i % svgWidth,
y: Math.floor(i / svgWidth),
entropy: entropyData[i]
});
}
const document = new nodom.Document();
let svg = document.createElement("svg");
svg = d3.select(svg)
.attr("width", "100%")
.attr("height", "100%")
.attr("viewBox", `0 0 ${svgWidth} ${svgHeight}`);
const greyScale = d3.scaleLinear()
.domain([0, d3.max(entropyData, d => d)])
.range(["#000000", "#FFFFFF"])
.interpolate(d3.interpolateRgb);
svg
.selectAll("rect")
.data(nodes)
.enter().append("rect")
.attr("x", d => d.x * cellSize)
.attr("y", d => d.y * cellSize)
.attr("width", cellSize)
.attr("height", cellSize)
.style("fill", d => greyScale(d.entropy));
return svg._groups[0][0].outerHTML;
}
/**
* Displays the entropy as a scale bar for web apps.
*
* @param {number} entropy
* @returns {html}
*/
present(entropy) {
createShannonEntropyVisualization(entropy) {
return `Shannon entropy: ${entropy}
<br><canvas id='chart-area'></canvas><br>
- 0 represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum, represents a completely random string.
- Standard English text usually falls somewhere between 3.5 and 5.
- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.
<br><canvas id='chart-area'></canvas><br>
- 0 represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum, represents a completely random string.
- Standard English text usually falls somewhere between 3.5 and 5.
- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.
The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could suggest encrypted or compressed sections.
The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could suggest encrypted or compressed sections.
<br><script>
var canvas = document.getElementById("chart-area"),
parentRect = canvas.parentNode.getBoundingClientRect(),
entropy = ${entropy},
height = parentRect.height * 0.25;
<br><script>
var canvas = document.getElementById("chart-area"),
parentRect = canvas.parentNode.getBoundingClientRect(),
entropy = ${entropy},
height = parentRect.height * 0.25;
canvas.width = parentRect.width * 0.95;
canvas.height = height > 150 ? 150 : height;
canvas.width = parentRect.width * 0.95;
canvas.height = height > 150 ? 150 : height;
CanvasComponents.drawScaleBar(canvas, entropy, 8, [
{
label: "English text",
min: 3.5,
max: 5
},{
label: "Encrypted/compressed",
min: 7.5,
max: 8
}
]);
</script>`;
CanvasComponents.drawScaleBar(canvas, entropy, 8, [
{
label: "English text",
min: 3.5,
max: 5
},{
label: "Encrypted/compressed",
min: 7.5,
max: 8
}
]);
</script>`;
}
/**
* @param {byteArray} input
* @param {Object[]} args
* @returns {html}
*/
run(input, args) {
const visualizationType = args[0];
if (visualizationType === 'Shannon') {
return this.createShannonEntropyVisualization(this.calculateShannonEntropy(input));
} else if (visualizationType === "Histogram (Bar)") {
return this.createByteFrequencyBarHistogram(this.calculateByteFrequency(input));
} else if (visualizationType === "Histogram (Line)") {
return this.createByteFrequencyLineHistogram(this.calculateByteFrequency(input));
} else if (visualizationType === "Curve") {
return this.createEntropyCurve(this.calculateScanningEntropy(input).entropyData);
} else if (visualizationType === "Image") {
return this.createEntropyImage(this.calculateScanningEntropy(input).entropyData);
}
}
}
export default Entropy;