1
0
mirror of synced 2025-01-22 03:23:49 +01:00

5493 lines
167 KiB
C
Raw Normal View History

//===--- ItaniumDemangle.h -----------*- mode:c++;eval:(read-only-mode) -*-===//
// Do not edit! See README.txt.
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Generic itanium demangler library.
// There are two copies of this file in the source tree. The one under
// libcxxabi is the original and the one under llvm is the copy. Use
// cp-to-llvm.sh to update the copy. See README.txt for more details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DEMANGLE_ITANIUMDEMANGLE_H
#define LLVM_DEMANGLE_ITANIUMDEMANGLE_H
#include "DemangleConfig.h"
#include "StringView.h"
#include "Utility.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <utility>
DEMANGLE_NAMESPACE_BEGIN
template <class T, size_t N> class PODSmallVector {
static_assert(std::is_pod<T>::value,
"T is required to be a plain old data type");
T *First = nullptr;
T *Last = nullptr;
T *Cap = nullptr;
T Inline[N] = {0};
bool isInline() const { return First == Inline; }
void clearInline() {
First = Inline;
Last = Inline;
Cap = Inline + N;
}
void reserve(size_t NewCap) {
size_t S = size();
if (isInline()) {
auto *Tmp = static_cast<T *>(std::malloc(NewCap * sizeof(T)));
if (Tmp == nullptr)
std::terminate();
std::copy(First, Last, Tmp);
First = Tmp;
} else {
First = static_cast<T *>(std::realloc(First, NewCap * sizeof(T)));
if (First == nullptr)
std::terminate();
}
Last = First + S;
Cap = First + NewCap;
}
public:
PODSmallVector() : First(Inline), Last(First), Cap(Inline + N) {}
PODSmallVector(const PODSmallVector &) = delete;
PODSmallVector &operator=(const PODSmallVector &) = delete;
PODSmallVector(PODSmallVector &&Other) : PODSmallVector() {
if (Other.isInline()) {
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return;
}
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
}
PODSmallVector &operator=(PODSmallVector &&Other) {
if (Other.isInline()) {
if (!isInline()) {
std::free(First);
clearInline();
}
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return *this;
}
if (isInline()) {
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
return *this;
}
std::swap(First, Other.First);
std::swap(Last, Other.Last);
std::swap(Cap, Other.Cap);
Other.clear();
return *this;
}
// NOLINTNEXTLINE(readability-identifier-naming)
void push_back(const T &Elem) {
if (Last == Cap)
reserve(size() * 2);
*Last++ = Elem;
}
// NOLINTNEXTLINE(readability-identifier-naming)
void pop_back() {
assert(Last != First && "Popping empty vector!");
--Last;
}
void dropBack(size_t Index) {
assert(Index <= size() && "dropBack() can't expand!");
Last = First + Index;
}
T *begin() { return First; }
T *end() { return Last; }
bool empty() const { return First == Last; }
size_t size() const { return static_cast<size_t>(Last - First); }
T &back() {
assert(Last != First && "Calling back() on empty vector!");
return *(Last - 1);
}
T &operator[](size_t Index) {
assert(Index < size() && "Invalid access!");
return *(begin() + Index);
}
void clear() { Last = First; }
~PODSmallVector() {
if (!isInline())
std::free(First);
}
};
// Base class of all AST nodes. The AST is built by the parser, then is
// traversed by the printLeft/Right functions to produce a demangled string.
class Node {
public:
enum Kind : unsigned char {
#define NODE(NodeKind) K##NodeKind,
#include "ItaniumNodes.def"
};
/// Three-way bool to track a cached value. Unknown is possible if this node
/// has an unexpanded parameter pack below it that may affect this cache.
enum class Cache : unsigned char { Yes, No, Unknown, };
/// Operator precedence for expression nodes. Used to determine required
/// parens in expression emission.
enum class Prec {
Primary,
Postfix,
Unary,
Cast,
PtrMem,
Multiplicative,
Additive,
Shift,
Spaceship,
Relational,
Equality,
And,
Xor,
Ior,
AndIf,
OrIf,
Conditional,
Assign,
Comma,
Default,
};
private:
Kind K;
Prec Precedence : 6;
// FIXME: Make these protected.
public:
/// Tracks if this node has a component on its right side, in which case we
/// need to call printRight.
Cache RHSComponentCache : 2;
/// Track if this node is a (possibly qualified) array type. This can affect
/// how we format the output string.
Cache ArrayCache : 2;
/// Track if this node is a (possibly qualified) function type. This can
/// affect how we format the output string.
Cache FunctionCache : 2;
public:
Node(Kind K_, Prec Precedence_ = Prec::Primary,
Cache RHSComponentCache_ = Cache::No, Cache ArrayCache_ = Cache::No,
Cache FunctionCache_ = Cache::No)
: K(K_), Precedence(Precedence_), RHSComponentCache(RHSComponentCache_),
ArrayCache(ArrayCache_), FunctionCache(FunctionCache_) {}
Node(Kind K_, Cache RHSComponentCache_, Cache ArrayCache_ = Cache::No,
Cache FunctionCache_ = Cache::No)
: Node(K_, Prec::Primary, RHSComponentCache_, ArrayCache_,
FunctionCache_) {}
/// Visit the most-derived object corresponding to this object.
template<typename Fn> void visit(Fn F) const;
// The following function is provided by all derived classes:
//
// Call F with arguments that, when passed to the constructor of this node,
// would construct an equivalent node.
//template<typename Fn> void match(Fn F) const;
bool hasRHSComponent(OutputBuffer &OB) const {
if (RHSComponentCache != Cache::Unknown)
return RHSComponentCache == Cache::Yes;
return hasRHSComponentSlow(OB);
}
bool hasArray(OutputBuffer &OB) const {
if (ArrayCache != Cache::Unknown)
return ArrayCache == Cache::Yes;
return hasArraySlow(OB);
}
bool hasFunction(OutputBuffer &OB) const {
if (FunctionCache != Cache::Unknown)
return FunctionCache == Cache::Yes;
return hasFunctionSlow(OB);
}
Kind getKind() const { return K; }
Prec getPrecedence() const { return Precedence; }
virtual bool hasRHSComponentSlow(OutputBuffer &) const { return false; }
virtual bool hasArraySlow(OutputBuffer &) const { return false; }
virtual bool hasFunctionSlow(OutputBuffer &) const { return false; }
// Dig through "glue" nodes like ParameterPack and ForwardTemplateReference to
// get at a node that actually represents some concrete syntax.
virtual const Node *getSyntaxNode(OutputBuffer &) const { return this; }
// Print this node as an expression operand, surrounding it in parentheses if
// its precedence is [Strictly] weaker than P.
void printAsOperand(OutputBuffer &OB, Prec P = Prec::Default,
bool StrictlyWorse = false) const {
bool Paren =
unsigned(getPrecedence()) >= unsigned(P) + unsigned(StrictlyWorse);
if (Paren)
OB.printOpen();
print(OB);
if (Paren)
OB.printClose();
}
void print(OutputBuffer &OB) const {
printLeft(OB);
if (RHSComponentCache != Cache::No)
printRight(OB);
}
// Print the "left" side of this Node into OutputBuffer.
virtual void printLeft(OutputBuffer &) const = 0;
// Print the "right". This distinction is necessary to represent C++ types
// that appear on the RHS of their subtype, such as arrays or functions.
// Since most types don't have such a component, provide a default
// implementation.
virtual void printRight(OutputBuffer &) const {}
virtual StringView getBaseName() const { return StringView(); }
// Silence compiler warnings, this dtor will never be called.
virtual ~Node() = default;
#ifndef NDEBUG
DEMANGLE_DUMP_METHOD void dump() const;
#endif
};
class NodeArray {
Node **Elements;
size_t NumElements;
public:
NodeArray() : Elements(nullptr), NumElements(0) {}
NodeArray(Node **Elements_, size_t NumElements_)
: Elements(Elements_), NumElements(NumElements_) {}
bool empty() const { return NumElements == 0; }
size_t size() const { return NumElements; }
Node **begin() const { return Elements; }
Node **end() const { return Elements + NumElements; }
Node *operator[](size_t Idx) const { return Elements[Idx]; }
void printWithComma(OutputBuffer &OB) const {
bool FirstElement = true;
for (size_t Idx = 0; Idx != NumElements; ++Idx) {
size_t BeforeComma = OB.getCurrentPosition();
if (!FirstElement)
OB += ", ";
size_t AfterComma = OB.getCurrentPosition();
Elements[Idx]->printAsOperand(OB, Node::Prec::Comma);
// Elements[Idx] is an empty parameter pack expansion, we should erase the
// comma we just printed.
if (AfterComma == OB.getCurrentPosition()) {
OB.setCurrentPosition(BeforeComma);
continue;
}
FirstElement = false;
}
}
};
struct NodeArrayNode : Node {
NodeArray Array;
NodeArrayNode(NodeArray Array_) : Node(KNodeArrayNode), Array(Array_) {}
template<typename Fn> void match(Fn F) const { F(Array); }
void printLeft(OutputBuffer &OB) const override { Array.printWithComma(OB); }
};
class DotSuffix final : public Node {
const Node *Prefix;
const StringView Suffix;
public:
DotSuffix(const Node *Prefix_, StringView Suffix_)
: Node(KDotSuffix), Prefix(Prefix_), Suffix(Suffix_) {}
template<typename Fn> void match(Fn F) const { F(Prefix, Suffix); }
void printLeft(OutputBuffer &OB) const override {
Prefix->print(OB);
OB += " (";
OB += Suffix;
OB += ")";
}
};
class VendorExtQualType final : public Node {
const Node *Ty;
StringView Ext;
const Node *TA;
public:
VendorExtQualType(const Node *Ty_, StringView Ext_, const Node *TA_)
: Node(KVendorExtQualType), Ty(Ty_), Ext(Ext_), TA(TA_) {}
const Node *getTy() const { return Ty; }
StringView getExt() const { return Ext; }
const Node *getTA() const { return TA; }
template <typename Fn> void match(Fn F) const { F(Ty, Ext, TA); }
void printLeft(OutputBuffer &OB) const override {
Ty->print(OB);
OB += " ";
OB += Ext;
if (TA != nullptr)
TA->print(OB);
}
};
enum FunctionRefQual : unsigned char {
FrefQualNone,
FrefQualLValue,
FrefQualRValue,
};
enum Qualifiers {
QualNone = 0,
QualConst = 0x1,
QualVolatile = 0x2,
QualRestrict = 0x4,
};
inline Qualifiers operator|=(Qualifiers &Q1, Qualifiers Q2) {
return Q1 = static_cast<Qualifiers>(Q1 | Q2);
}
class QualType final : public Node {
protected:
const Qualifiers Quals;
const Node *Child;
void printQuals(OutputBuffer &OB) const {
if (Quals & QualConst)
OB += " const";
if (Quals & QualVolatile)
OB += " volatile";
if (Quals & QualRestrict)
OB += " restrict";
}
public:
QualType(const Node *Child_, Qualifiers Quals_)
: Node(KQualType, Child_->RHSComponentCache,
Child_->ArrayCache, Child_->FunctionCache),
Quals(Quals_), Child(Child_) {}
Qualifiers getQuals() const { return Quals; }
const Node *getChild() const { return Child; }
template<typename Fn> void match(Fn F) const { F(Child, Quals); }
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
return Child->hasRHSComponent(OB);
}
bool hasArraySlow(OutputBuffer &OB) const override {
return Child->hasArray(OB);
}
bool hasFunctionSlow(OutputBuffer &OB) const override {
return Child->hasFunction(OB);
}
void printLeft(OutputBuffer &OB) const override {
Child->printLeft(OB);
printQuals(OB);
}
void printRight(OutputBuffer &OB) const override { Child->printRight(OB); }
};
class ConversionOperatorType final : public Node {
const Node *Ty;
public:
ConversionOperatorType(const Node *Ty_)
: Node(KConversionOperatorType), Ty(Ty_) {}
template<typename Fn> void match(Fn F) const { F(Ty); }
void printLeft(OutputBuffer &OB) const override {
OB += "operator ";
Ty->print(OB);
}
};
class PostfixQualifiedType final : public Node {
const Node *Ty;
const StringView Postfix;
public:
PostfixQualifiedType(const Node *Ty_, StringView Postfix_)
: Node(KPostfixQualifiedType), Ty(Ty_), Postfix(Postfix_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Postfix); }
void printLeft(OutputBuffer &OB) const override {
Ty->printLeft(OB);
OB += Postfix;
}
};
class NameType final : public Node {
const StringView Name;
public:
NameType(StringView Name_) : Node(KNameType), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Name); }
StringView getName() const { return Name; }
StringView getBaseName() const override { return Name; }
void printLeft(OutputBuffer &OB) const override { OB += Name; }
};
class BitIntType final : public Node {
const Node *Size;
bool Signed;
public:
BitIntType(const Node *Size_, bool Signed_)
: Node(KBitIntType), Size(Size_), Signed(Signed_) {}
template <typename Fn> void match(Fn F) const { F(Size, Signed); }
void printLeft(OutputBuffer &OB) const override {
if (!Signed)
OB += "unsigned ";
OB += "_BitInt";
OB.printOpen();
Size->printAsOperand(OB);
OB.printClose();
}
};
class ElaboratedTypeSpefType : public Node {
StringView Kind;
Node *Child;
public:
ElaboratedTypeSpefType(StringView Kind_, Node *Child_)
: Node(KElaboratedTypeSpefType), Kind(Kind_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Kind, Child); }
void printLeft(OutputBuffer &OB) const override {
OB += Kind;
OB += ' ';
Child->print(OB);
}
};
struct AbiTagAttr : Node {
Node *Base;
StringView Tag;
AbiTagAttr(Node* Base_, StringView Tag_)
: Node(KAbiTagAttr, Base_->RHSComponentCache,
Base_->ArrayCache, Base_->FunctionCache),
Base(Base_), Tag(Tag_) {}
template<typename Fn> void match(Fn F) const { F(Base, Tag); }
void printLeft(OutputBuffer &OB) const override {
Base->printLeft(OB);
OB += "[abi:";
OB += Tag;
OB += "]";
}
};
class EnableIfAttr : public Node {
NodeArray Conditions;
public:
EnableIfAttr(NodeArray Conditions_)
: Node(KEnableIfAttr), Conditions(Conditions_) {}
template<typename Fn> void match(Fn F) const { F(Conditions); }
void printLeft(OutputBuffer &OB) const override {
OB += " [enable_if:";
Conditions.printWithComma(OB);
OB += ']';
}
};
class ObjCProtoName : public Node {
const Node *Ty;
StringView Protocol;
friend class PointerType;
public:
ObjCProtoName(const Node *Ty_, StringView Protocol_)
: Node(KObjCProtoName), Ty(Ty_), Protocol(Protocol_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Protocol); }
bool isObjCObject() const {
return Ty->getKind() == KNameType &&
static_cast<const NameType *>(Ty)->getName() == "objc_object";
}
void printLeft(OutputBuffer &OB) const override {
Ty->print(OB);
OB += "<";
OB += Protocol;
OB += ">";
}
};
class PointerType final : public Node {
const Node *Pointee;
public:
PointerType(const Node *Pointee_)
: Node(KPointerType, Pointee_->RHSComponentCache),
Pointee(Pointee_) {}
const Node *getPointee() const { return Pointee; }
template<typename Fn> void match(Fn F) const { F(Pointee); }
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
return Pointee->hasRHSComponent(OB);
}
void printLeft(OutputBuffer &OB) const override {
// We rewrite objc_object<SomeProtocol>* into id<SomeProtocol>.
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
Pointee->printLeft(OB);
if (Pointee->hasArray(OB))
OB += " ";
if (Pointee->hasArray(OB) || Pointee->hasFunction(OB))
OB += "(";
OB += "*";
} else {
const auto *objcProto = static_cast<const ObjCProtoName *>(Pointee);
OB += "id<";
OB += objcProto->Protocol;
OB += ">";
}
}
void printRight(OutputBuffer &OB) const override {
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
if (Pointee->hasArray(OB) || Pointee->hasFunction(OB))
OB += ")";
Pointee->printRight(OB);
}
}
};
enum class ReferenceKind {
LValue,
RValue,
};
// Represents either a LValue or an RValue reference type.
class ReferenceType : public Node {
const Node *Pointee;
ReferenceKind RK;
mutable bool Printing = false;
// Dig through any refs to refs, collapsing the ReferenceTypes as we go. The
// rule here is rvalue ref to rvalue ref collapses to a rvalue ref, and any
// other combination collapses to a lvalue ref.
//
// A combination of a TemplateForwardReference and a back-ref Substitution
// from an ill-formed string may have created a cycle; use cycle detection to
// avoid looping forever.
std::pair<ReferenceKind, const Node *> collapse(OutputBuffer &OB) const {
auto SoFar = std::make_pair(RK, Pointee);
// Track the chain of nodes for the Floyd's 'tortoise and hare'
// cycle-detection algorithm, since getSyntaxNode(S) is impure
PODSmallVector<const Node *, 8> Prev;
for (;;) {
const Node *SN = SoFar.second->getSyntaxNode(OB);
if (SN->getKind() != KReferenceType)
break;
auto *RT = static_cast<const ReferenceType *>(SN);
SoFar.second = RT->Pointee;
SoFar.first = std::min(SoFar.first, RT->RK);
// The middle of Prev is the 'slow' pointer moving at half speed
Prev.push_back(SoFar.second);
if (Prev.size() > 1 && SoFar.second == Prev[(Prev.size() - 1) / 2]) {
// Cycle detected
SoFar.second = nullptr;
break;
}
}
return SoFar;
}
public:
ReferenceType(const Node *Pointee_, ReferenceKind RK_)
: Node(KReferenceType, Pointee_->RHSComponentCache),
Pointee(Pointee_), RK(RK_) {}
template<typename Fn> void match(Fn F) const { F(Pointee, RK); }
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
return Pointee->hasRHSComponent(OB);
}
void printLeft(OutputBuffer &OB) const override {
if (Printing)
return;
ScopedOverride<bool> SavePrinting(Printing, true);
std::pair<ReferenceKind, const Node *> Collapsed = collapse(OB);
if (!Collapsed.second)
return;
Collapsed.second->printLeft(OB);
if (Collapsed.second->hasArray(OB))
OB += " ";
if (Collapsed.second->hasArray(OB) || Collapsed.second->hasFunction(OB))
OB += "(";
OB += (Collapsed.first == ReferenceKind::LValue ? "&" : "&&");
}
void printRight(OutputBuffer &OB) const override {
if (Printing)
return;
ScopedOverride<bool> SavePrinting(Printing, true);
std::pair<ReferenceKind, const Node *> Collapsed = collapse(OB);
if (!Collapsed.second)
return;
if (Collapsed.second->hasArray(OB) || Collapsed.second->hasFunction(OB))
OB += ")";
Collapsed.second->printRight(OB);
}
};
class PointerToMemberType final : public Node {
const Node *ClassType;
const Node *MemberType;
public:
PointerToMemberType(const Node *ClassType_, const Node *MemberType_)
: Node(KPointerToMemberType, MemberType_->RHSComponentCache),
ClassType(ClassType_), MemberType(MemberType_) {}
template<typename Fn> void match(Fn F) const { F(ClassType, MemberType); }
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
return MemberType->hasRHSComponent(OB);
}
void printLeft(OutputBuffer &OB) const override {
MemberType->printLeft(OB);
if (MemberType->hasArray(OB) || MemberType->hasFunction(OB))
OB += "(";
else
OB += " ";
ClassType->print(OB);
OB += "::*";
}
void printRight(OutputBuffer &OB) const override {
if (MemberType->hasArray(OB) || MemberType->hasFunction(OB))
OB += ")";
MemberType->printRight(OB);
}
};
class ArrayType final : public Node {
const Node *Base;
Node *Dimension;
public:
ArrayType(const Node *Base_, Node *Dimension_)
: Node(KArrayType,
/*RHSComponentCache=*/Cache::Yes,
/*ArrayCache=*/Cache::Yes),
Base(Base_), Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(Base, Dimension); }
bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
bool hasArraySlow(OutputBuffer &) const override { return true; }
void printLeft(OutputBuffer &OB) const override { Base->printLeft(OB); }
void printRight(OutputBuffer &OB) const override {
if (OB.back() != ']')
OB += " ";
OB += "[";
if (Dimension)
Dimension->print(OB);
OB += "]";
Base->printRight(OB);
}
};
class FunctionType final : public Node {
const Node *Ret;
NodeArray Params;
Qualifiers CVQuals;
FunctionRefQual RefQual;
const Node *ExceptionSpec;
public:
FunctionType(const Node *Ret_, NodeArray Params_, Qualifiers CVQuals_,
FunctionRefQual RefQual_, const Node *ExceptionSpec_)
: Node(KFunctionType,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Params(Params_), CVQuals(CVQuals_), RefQual(RefQual_),
ExceptionSpec(ExceptionSpec_) {}
template<typename Fn> void match(Fn F) const {
F(Ret, Params, CVQuals, RefQual, ExceptionSpec);
}
bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
bool hasFunctionSlow(OutputBuffer &) const override { return true; }
// Handle C++'s ... quirky decl grammar by using the left & right
// distinction. Consider:
// int (*f(float))(char) {}
// f is a function that takes a float and returns a pointer to a function
// that takes a char and returns an int. If we're trying to print f, start
// by printing out the return types's left, then print our parameters, then
// finally print right of the return type.
void printLeft(OutputBuffer &OB) const override {
Ret->printLeft(OB);
OB += " ";
}
void printRight(OutputBuffer &OB) const override {
OB.printOpen();
Params.printWithComma(OB);
OB.printClose();
Ret->printRight(OB);
if (CVQuals & QualConst)
OB += " const";
if (CVQuals & QualVolatile)
OB += " volatile";
if (CVQuals & QualRestrict)
OB += " restrict";
if (RefQual == FrefQualLValue)
OB += " &";
else if (RefQual == FrefQualRValue)
OB += " &&";
if (ExceptionSpec != nullptr) {
OB += ' ';
ExceptionSpec->print(OB);
}
}
};
class NoexceptSpec : public Node {
const Node *E;
public:
NoexceptSpec(const Node *E_) : Node(KNoexceptSpec), E(E_) {}
template<typename Fn> void match(Fn F) const { F(E); }
void printLeft(OutputBuffer &OB) const override {
OB += "noexcept";
OB.printOpen();
E->printAsOperand(OB);
OB.printClose();
}
};
class DynamicExceptionSpec : public Node {
NodeArray Types;
public:
DynamicExceptionSpec(NodeArray Types_)
: Node(KDynamicExceptionSpec), Types(Types_) {}
template<typename Fn> void match(Fn F) const { F(Types); }
void printLeft(OutputBuffer &OB) const override {
OB += "throw";
OB.printOpen();
Types.printWithComma(OB);
OB.printClose();
}
};
class FunctionEncoding final : public Node {
const Node *Ret;
const Node *Name;
NodeArray Params;
const Node *Attrs;
Qualifiers CVQuals;
FunctionRefQual RefQual;
public:
FunctionEncoding(const Node *Ret_, const Node *Name_, NodeArray Params_,
const Node *Attrs_, Qualifiers CVQuals_,
FunctionRefQual RefQual_)
: Node(KFunctionEncoding,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Name(Name_), Params(Params_), Attrs(Attrs_),
CVQuals(CVQuals_), RefQual(RefQual_) {}
template<typename Fn> void match(Fn F) const {
F(Ret, Name, Params, Attrs, CVQuals, RefQual);
}
Qualifiers getCVQuals() const { return CVQuals; }
FunctionRefQual getRefQual() const { return RefQual; }
NodeArray getParams() const { return Params; }
const Node *getReturnType() const { return Ret; }
bool hasRHSComponentSlow(OutputBuffer &) const override { return true; }
bool hasFunctionSlow(OutputBuffer &) const override { return true; }
const Node *getName() const { return Name; }
void printLeft(OutputBuffer &OB) const override {
if (Ret) {
Ret->printLeft(OB);
if (!Ret->hasRHSComponent(OB))
OB += " ";
}
Name->print(OB);
}
void printRight(OutputBuffer &OB) const override {
OB.printOpen();
Params.printWithComma(OB);
OB.printClose();
if (Ret)
Ret->printRight(OB);
if (CVQuals & QualConst)
OB += " const";
if (CVQuals & QualVolatile)
OB += " volatile";
if (CVQuals & QualRestrict)
OB += " restrict";
if (RefQual == FrefQualLValue)
OB += " &";
else if (RefQual == FrefQualRValue)
OB += " &&";
if (Attrs != nullptr)
Attrs->print(OB);
}
};
class LiteralOperator : public Node {
const Node *OpName;
public:
LiteralOperator(const Node *OpName_)
: Node(KLiteralOperator), OpName(OpName_) {}
template<typename Fn> void match(Fn F) const { F(OpName); }
void printLeft(OutputBuffer &OB) const override {
OB += "operator\"\" ";
OpName->print(OB);
}
};
class SpecialName final : public Node {
const StringView Special;
const Node *Child;
public:
SpecialName(StringView Special_, const Node *Child_)
: Node(KSpecialName), Special(Special_), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Special, Child); }
void printLeft(OutputBuffer &OB) const override {
OB += Special;
Child->print(OB);
}
};
class CtorVtableSpecialName final : public Node {
const Node *FirstType;
const Node *SecondType;
public:
CtorVtableSpecialName(const Node *FirstType_, const Node *SecondType_)
: Node(KCtorVtableSpecialName),
FirstType(FirstType_), SecondType(SecondType_) {}
template<typename Fn> void match(Fn F) const { F(FirstType, SecondType); }
void printLeft(OutputBuffer &OB) const override {
OB += "construction vtable for ";
FirstType->print(OB);
OB += "-in-";
SecondType->print(OB);
}
};
struct NestedName : Node {
Node *Qual;
Node *Name;
NestedName(Node *Qual_, Node *Name_)
: Node(KNestedName), Qual(Qual_), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Qual, Name); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputBuffer &OB) const override {
Qual->print(OB);
OB += "::";
Name->print(OB);
}
};
struct ModuleName : Node {
ModuleName *Parent;
Node *Name;
bool IsPartition;
ModuleName(ModuleName *Parent_, Node *Name_, bool IsPartition_ = false)
: Node(KModuleName), Parent(Parent_), Name(Name_),
IsPartition(IsPartition_) {}
template <typename Fn> void match(Fn F) const {
F(Parent, Name, IsPartition);
}
void printLeft(OutputBuffer &OB) const override {
if (Parent)
Parent->print(OB);
if (Parent || IsPartition)
OB += IsPartition ? ':' : '.';
Name->print(OB);
}
};
struct ModuleEntity : Node {
ModuleName *Module;
Node *Name;
ModuleEntity(ModuleName *Module_, Node *Name_)
: Node(KModuleEntity), Module(Module_), Name(Name_) {}
template <typename Fn> void match(Fn F) const { F(Module, Name); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputBuffer &OB) const override {
Name->print(OB);
OB += '@';
Module->print(OB);
}
};
struct LocalName : Node {
Node *Encoding;
Node *Entity;
LocalName(Node *Encoding_, Node *Entity_)
: Node(KLocalName), Encoding(Encoding_), Entity(Entity_) {}
template<typename Fn> void match(Fn F) const { F(Encoding, Entity); }
void printLeft(OutputBuffer &OB) const override {
Encoding->print(OB);
OB += "::";
Entity->print(OB);
}
};
class QualifiedName final : public Node {
// qualifier::name
const Node *Qualifier;
const Node *Name;
public:
QualifiedName(const Node *Qualifier_, const Node *Name_)
: Node(KQualifiedName), Qualifier(Qualifier_), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Qualifier, Name); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputBuffer &OB) const override {
Qualifier->print(OB);
OB += "::";
Name->print(OB);
}
};
class VectorType final : public Node {
const Node *BaseType;
const Node *Dimension;
public:
VectorType(const Node *BaseType_, const Node *Dimension_)
: Node(KVectorType), BaseType(BaseType_), Dimension(Dimension_) {}
const Node *getBaseType() const { return BaseType; }
const Node *getDimension() const { return Dimension; }
template<typename Fn> void match(Fn F) const { F(BaseType, Dimension); }
void printLeft(OutputBuffer &OB) const override {
BaseType->print(OB);
OB += " vector[";
if (Dimension)
Dimension->print(OB);
OB += "]";
}
};
class PixelVectorType final : public Node {
const Node *Dimension;
public:
PixelVectorType(const Node *Dimension_)
: Node(KPixelVectorType), Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(Dimension); }
void printLeft(OutputBuffer &OB) const override {
// FIXME: This should demangle as "vector pixel".
OB += "pixel vector[";
Dimension->print(OB);
OB += "]";
}
};
class BinaryFPType final : public Node {
const Node *Dimension;
public:
BinaryFPType(const Node *Dimension_)
: Node(KBinaryFPType), Dimension(Dimension_) {}
template<typename Fn> void match(Fn F) const { F(Dimension); }
void printLeft(OutputBuffer &OB) const override {
OB += "_Float";
Dimension->print(OB);
}
};
enum class TemplateParamKind { Type, NonType, Template };
/// An invented name for a template parameter for which we don't have a
/// corresponding template argument.
///
/// This node is created when parsing the <lambda-sig> for a lambda with
/// explicit template arguments, which might be referenced in the parameter
/// types appearing later in the <lambda-sig>.
class SyntheticTemplateParamName final : public Node {
TemplateParamKind Kind;
unsigned Index;
public:
SyntheticTemplateParamName(TemplateParamKind Kind_, unsigned Index_)
: Node(KSyntheticTemplateParamName), Kind(Kind_), Index(Index_) {}
template<typename Fn> void match(Fn F) const { F(Kind, Index); }
void printLeft(OutputBuffer &OB) const override {
switch (Kind) {
case TemplateParamKind::Type:
OB += "$T";
break;
case TemplateParamKind::NonType:
OB += "$N";
break;
case TemplateParamKind::Template:
OB += "$TT";
break;
}
if (Index > 0)
OB << Index - 1;
}
};
/// A template type parameter declaration, 'typename T'.
class TypeTemplateParamDecl final : public Node {
Node *Name;
public:
TypeTemplateParamDecl(Node *Name_)
: Node(KTypeTemplateParamDecl, Cache::Yes), Name(Name_) {}
template<typename Fn> void match(Fn F) const { F(Name); }
void printLeft(OutputBuffer &OB) const override { OB += "typename "; }
void printRight(OutputBuffer &OB) const override { Name->print(OB); }
};
/// A non-type template parameter declaration, 'int N'.
class NonTypeTemplateParamDecl final : public Node {
Node *Name;
Node *Type;
public:
NonTypeTemplateParamDecl(Node *Name_, Node *Type_)
: Node(KNonTypeTemplateParamDecl, Cache::Yes), Name(Name_), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Name, Type); }
void printLeft(OutputBuffer &OB) const override {
Type->printLeft(OB);
if (!Type->hasRHSComponent(OB))
OB += " ";
}
void printRight(OutputBuffer &OB) const override {
Name->print(OB);
Type->printRight(OB);
}
};
/// A template template parameter declaration,
/// 'template<typename T> typename N'.
class TemplateTemplateParamDecl final : public Node {
Node *Name;
NodeArray Params;
public:
TemplateTemplateParamDecl(Node *Name_, NodeArray Params_)
: Node(KTemplateTemplateParamDecl, Cache::Yes), Name(Name_),
Params(Params_) {}
template<typename Fn> void match(Fn F) const { F(Name, Params); }
void printLeft(OutputBuffer &OB) const override {
ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
OB += "template<";
Params.printWithComma(OB);
OB += "> typename ";
}
void printRight(OutputBuffer &OB) const override { Name->print(OB); }
};
/// A template parameter pack declaration, 'typename ...T'.
class TemplateParamPackDecl final : public Node {
Node *Param;
public:
TemplateParamPackDecl(Node *Param_)
: Node(KTemplateParamPackDecl, Cache::Yes), Param(Param_) {}
template<typename Fn> void match(Fn F) const { F(Param); }
void printLeft(OutputBuffer &OB) const override {
Param->printLeft(OB);
OB += "...";
}
void printRight(OutputBuffer &OB) const override { Param->printRight(OB); }
};
/// An unexpanded parameter pack (either in the expression or type context). If
/// this AST is correct, this node will have a ParameterPackExpansion node above
/// it.
///
/// This node is created when some <template-args> are found that apply to an
/// <encoding>, and is stored in the TemplateParams table. In order for this to
/// appear in the final AST, it has to referenced via a <template-param> (ie,
/// T_).
class ParameterPack final : public Node {
NodeArray Data;
// Setup OutputBuffer for a pack expansion, unless we're already expanding
// one.
void initializePackExpansion(OutputBuffer &OB) const {
if (OB.CurrentPackMax == std::numeric_limits<unsigned>::max()) {
OB.CurrentPackMax = static_cast<unsigned>(Data.size());
OB.CurrentPackIndex = 0;
}
}
public:
ParameterPack(NodeArray Data_) : Node(KParameterPack), Data(Data_) {
ArrayCache = FunctionCache = RHSComponentCache = Cache::Unknown;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->ArrayCache == Cache::No;
}))
ArrayCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->FunctionCache == Cache::No;
}))
FunctionCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->RHSComponentCache == Cache::No;
}))
RHSComponentCache = Cache::No;
}
template<typename Fn> void match(Fn F) const { F(Data); }
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasRHSComponent(OB);
}
bool hasArraySlow(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasArray(OB);
}
bool hasFunctionSlow(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasFunction(OB);
}
const Node *getSyntaxNode(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
return Idx < Data.size() ? Data[Idx]->getSyntaxNode(OB) : this;
}
void printLeft(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printLeft(OB);
}
void printRight(OutputBuffer &OB) const override {
initializePackExpansion(OB);
size_t Idx = OB.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printRight(OB);
}
};
/// A variadic template argument. This node represents an occurrence of
/// J<something>E in some <template-args>. It isn't itself unexpanded, unless
/// one of it's Elements is. The parser inserts a ParameterPack into the
/// TemplateParams table if the <template-args> this pack belongs to apply to an
/// <encoding>.
class TemplateArgumentPack final : public Node {
NodeArray Elements;
public:
TemplateArgumentPack(NodeArray Elements_)
: Node(KTemplateArgumentPack), Elements(Elements_) {}
template<typename Fn> void match(Fn F) const { F(Elements); }
NodeArray getElements() const { return Elements; }
void printLeft(OutputBuffer &OB) const override {
Elements.printWithComma(OB);
}
};
/// A pack expansion. Below this node, there are some unexpanded ParameterPacks
/// which each have Child->ParameterPackSize elements.
class ParameterPackExpansion final : public Node {
const Node *Child;
public:
ParameterPackExpansion(const Node *Child_)
: Node(KParameterPackExpansion), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child); }
const Node *getChild() const { return Child; }
void printLeft(OutputBuffer &OB) const override {
constexpr unsigned Max = std::numeric_limits<unsigned>::max();
ScopedOverride<unsigned> SavePackIdx(OB.CurrentPackIndex, Max);
ScopedOverride<unsigned> SavePackMax(OB.CurrentPackMax, Max);
size_t StreamPos = OB.getCurrentPosition();
// Print the first element in the pack. If Child contains a ParameterPack,
// it will set up S.CurrentPackMax and print the first element.
Child->print(OB);
// No ParameterPack was found in Child. This can occur if we've found a pack
// expansion on a <function-param>.
if (OB.CurrentPackMax == Max) {
OB += "...";
return;
}
// We found a ParameterPack, but it has no elements. Erase whatever we may
// of printed.
if (OB.CurrentPackMax == 0) {
OB.setCurrentPosition(StreamPos);
return;
}
// Else, iterate through the rest of the elements in the pack.
for (unsigned I = 1, E = OB.CurrentPackMax; I < E; ++I) {
OB += ", ";
OB.CurrentPackIndex = I;
Child->print(OB);
}
}
};
class TemplateArgs final : public Node {
NodeArray Params;
public:
TemplateArgs(NodeArray Params_) : Node(KTemplateArgs), Params(Params_) {}
template<typename Fn> void match(Fn F) const { F(Params); }
NodeArray getParams() { return Params; }
void printLeft(OutputBuffer &OB) const override {
ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
OB += "<";
Params.printWithComma(OB);
OB += ">";
}
};
/// A forward-reference to a template argument that was not known at the point
/// where the template parameter name was parsed in a mangling.
///
/// This is created when demangling the name of a specialization of a
/// conversion function template:
///
/// \code
/// struct A {
/// template<typename T> operator T*();
/// };
/// \endcode
///
/// When demangling a specialization of the conversion function template, we
/// encounter the name of the template (including the \c T) before we reach
/// the template argument list, so we cannot substitute the parameter name
/// for the corresponding argument while parsing. Instead, we create a
/// \c ForwardTemplateReference node that is resolved after we parse the
/// template arguments.
struct ForwardTemplateReference : Node {
size_t Index;
Node *Ref = nullptr;
// If we're currently printing this node. It is possible (though invalid) for
// a forward template reference to refer to itself via a substitution. This
// creates a cyclic AST, which will stack overflow printing. To fix this, bail
// out if more than one print* function is active.
mutable bool Printing = false;
ForwardTemplateReference(size_t Index_)
: Node(KForwardTemplateReference, Cache::Unknown, Cache::Unknown,
Cache::Unknown),
Index(Index_) {}
// We don't provide a matcher for these, because the value of the node is
// not determined by its construction parameters, and it generally needs
// special handling.
template<typename Fn> void match(Fn F) const = delete;
bool hasRHSComponentSlow(OutputBuffer &OB) const override {
if (Printing)
return false;
ScopedOverride<bool> SavePrinting(Printing, true);
return Ref->hasRHSComponent(OB);
}
bool hasArraySlow(OutputBuffer &OB) const override {
if (Printing)
return false;
ScopedOverride<bool> SavePrinting(Printing, true);
return Ref->hasArray(OB);
}
bool hasFunctionSlow(OutputBuffer &OB) const override {
if (Printing)
return false;
ScopedOverride<bool> SavePrinting(Printing, true);
return Ref->hasFunction(OB);
}
const Node *getSyntaxNode(OutputBuffer &OB) const override {
if (Printing)
return this;
ScopedOverride<bool> SavePrinting(Printing, true);
return Ref->getSyntaxNode(OB);
}
void printLeft(OutputBuffer &OB) const override {
if (Printing)
return;
ScopedOverride<bool> SavePrinting(Printing, true);
Ref->printLeft(OB);
}
void printRight(OutputBuffer &OB) const override {
if (Printing)
return;
ScopedOverride<bool> SavePrinting(Printing, true);
Ref->printRight(OB);
}
};
struct NameWithTemplateArgs : Node {
// name<template_args>
Node *Name;
Node *TemplateArgs;
NameWithTemplateArgs(Node *Name_, Node *TemplateArgs_)
: Node(KNameWithTemplateArgs), Name(Name_), TemplateArgs(TemplateArgs_) {}
template<typename Fn> void match(Fn F) const { F(Name, TemplateArgs); }
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputBuffer &OB) const override {
Name->print(OB);
TemplateArgs->print(OB);
}
};
class GlobalQualifiedName final : public Node {
Node *Child;
public:
GlobalQualifiedName(Node* Child_)
: Node(KGlobalQualifiedName), Child(Child_) {}
template<typename Fn> void match(Fn F) const { F(Child); }
StringView getBaseName() const override { return Child->getBaseName(); }
void printLeft(OutputBuffer &OB) const override {
OB += "::";
Child->print(OB);
}
};
enum class SpecialSubKind {
allocator,
basic_string,
string,
istream,
ostream,
iostream,
};
class SpecialSubstitution;
class ExpandedSpecialSubstitution : public Node {
protected:
SpecialSubKind SSK;
ExpandedSpecialSubstitution(SpecialSubKind SSK_, Kind K_)
: Node(K_), SSK(SSK_) {}
public:
ExpandedSpecialSubstitution(SpecialSubKind SSK_)
: ExpandedSpecialSubstitution(SSK_, KExpandedSpecialSubstitution) {}
inline ExpandedSpecialSubstitution(SpecialSubstitution const *);
template<typename Fn> void match(Fn F) const { F(SSK); }
protected:
bool isInstantiation() const {
return unsigned(SSK) >= unsigned(SpecialSubKind::string);
}
StringView getBaseName() const override {
switch (SSK) {
case SpecialSubKind::allocator:
return StringView("allocator");
case SpecialSubKind::basic_string:
return StringView("basic_string");
case SpecialSubKind::string:
return StringView("basic_string");
case SpecialSubKind::istream:
return StringView("basic_istream");
case SpecialSubKind::ostream:
return StringView("basic_ostream");
case SpecialSubKind::iostream:
return StringView("basic_iostream");
}
DEMANGLE_UNREACHABLE;
}
private:
void printLeft(OutputBuffer &OB) const override {
OB << "std::" << getBaseName();
if (isInstantiation()) {
OB << "<char, std::char_traits<char>";
if (SSK == SpecialSubKind::string)
OB << ", std::allocator<char>";
OB << ">";
}
}
};
class SpecialSubstitution final : public ExpandedSpecialSubstitution {
public:
SpecialSubstitution(SpecialSubKind SSK_)
: ExpandedSpecialSubstitution(SSK_, KSpecialSubstitution) {}
template<typename Fn> void match(Fn F) const { F(SSK); }
StringView getBaseName() const override {
auto SV = ExpandedSpecialSubstitution::getBaseName ();
if (isInstantiation()) {
// The instantiations are typedefs that drop the "basic_" prefix.
assert(SV.startsWith("basic_"));
SV = SV.dropFront(sizeof("basic_") - 1);
}
return SV;
}
void printLeft(OutputBuffer &OB) const override {
OB << "std::" << getBaseName();
}
};
inline ExpandedSpecialSubstitution::ExpandedSpecialSubstitution(
SpecialSubstitution const *SS)
: ExpandedSpecialSubstitution(SS->SSK) {}
class CtorDtorName final : public Node {
const Node *Basename;
const bool IsDtor;
const int Variant;
public:
CtorDtorName(const Node *Basename_, bool IsDtor_, int Variant_)
: Node(KCtorDtorName), Basename(Basename_), IsDtor(IsDtor_),
Variant(Variant_) {}
template<typename Fn> void match(Fn F) const { F(Basename, IsDtor, Variant); }
void printLeft(OutputBuffer &OB) const override {
if (IsDtor)
OB += "~";
OB += Basename->getBaseName();
}
};
class DtorName : public Node {
const Node *Base;
public:
DtorName(const Node *Base_) : Node(KDtorName), Base(Base_) {}
template<typename Fn> void match(Fn F) const { F(Base); }
void printLeft(OutputBuffer &OB) const override {
OB += "~";
Base->printLeft(OB);
}
};
class UnnamedTypeName : public Node {
const StringView Count;
public:
UnnamedTypeName(StringView Count_) : Node(KUnnamedTypeName), Count(Count_) {}
template<typename Fn> void match(Fn F) const { F(Count); }
void printLeft(OutputBuffer &OB) const override {
OB += "'unnamed";
OB += Count;
OB += "\'";
}
};
class ClosureTypeName : public Node {
NodeArray TemplateParams;
NodeArray Params;
StringView Count;
public:
ClosureTypeName(NodeArray TemplateParams_, NodeArray Params_,
StringView Count_)
: Node(KClosureTypeName), TemplateParams(TemplateParams_),
Params(Params_), Count(Count_) {}
template<typename Fn> void match(Fn F) const {
F(TemplateParams, Params, Count);
}
void printDeclarator(OutputBuffer &OB) const {
if (!TemplateParams.empty()) {
ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
OB += "<";
TemplateParams.printWithComma(OB);
OB += ">";
}
OB.printOpen();
Params.printWithComma(OB);
OB.printClose();
}
void printLeft(OutputBuffer &OB) const override {
OB += "\'lambda";
OB += Count;
OB += "\'";
printDeclarator(OB);
}
};
class StructuredBindingName : public Node {
NodeArray Bindings;
public:
StructuredBindingName(NodeArray Bindings_)
: Node(KStructuredBindingName), Bindings(Bindings_) {}
template<typename Fn> void match(Fn F) const { F(Bindings); }
void printLeft(OutputBuffer &OB) const override {
OB.printOpen('[');
Bindings.printWithComma(OB);
OB.printClose(']');
}
};
// -- Expression Nodes --
class BinaryExpr : public Node {
const Node *LHS;
const StringView InfixOperator;
const Node *RHS;
public:
BinaryExpr(const Node *LHS_, StringView InfixOperator_, const Node *RHS_,
Prec Prec_)
: Node(KBinaryExpr, Prec_), LHS(LHS_), InfixOperator(InfixOperator_),
RHS(RHS_) {}
template <typename Fn> void match(Fn F) const {
F(LHS, InfixOperator, RHS, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
bool ParenAll = OB.isGtInsideTemplateArgs() &&
(InfixOperator == ">" || InfixOperator == ">>");
if (ParenAll)
OB.printOpen();
// Assignment is right associative, with special LHS precedence.
bool IsAssign = getPrecedence() == Prec::Assign;
LHS->printAsOperand(OB, IsAssign ? Prec::OrIf : getPrecedence(), !IsAssign);
// No space before comma operator
if (!(InfixOperator == ","))
OB += " ";
OB += InfixOperator;
OB += " ";
RHS->printAsOperand(OB, getPrecedence(), IsAssign);
if (ParenAll)
OB.printClose();
}
};
class ArraySubscriptExpr : public Node {
const Node *Op1;
const Node *Op2;
public:
ArraySubscriptExpr(const Node *Op1_, const Node *Op2_, Prec Prec_)
: Node(KArraySubscriptExpr, Prec_), Op1(Op1_), Op2(Op2_) {}
template <typename Fn> void match(Fn F) const {
F(Op1, Op2, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
Op1->printAsOperand(OB, getPrecedence());
OB.printOpen('[');
Op2->printAsOperand(OB);
OB.printClose(']');
}
};
class PostfixExpr : public Node {
const Node *Child;
const StringView Operator;
public:
PostfixExpr(const Node *Child_, StringView Operator_, Prec Prec_)
: Node(KPostfixExpr, Prec_), Child(Child_), Operator(Operator_) {}
template <typename Fn> void match(Fn F) const {
F(Child, Operator, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
Child->printAsOperand(OB, getPrecedence(), true);
OB += Operator;
}
};
class ConditionalExpr : public Node {
const Node *Cond;
const Node *Then;
const Node *Else;
public:
ConditionalExpr(const Node *Cond_, const Node *Then_, const Node *Else_,
Prec Prec_)
: Node(KConditionalExpr, Prec_), Cond(Cond_), Then(Then_), Else(Else_) {}
template <typename Fn> void match(Fn F) const {
F(Cond, Then, Else, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
Cond->printAsOperand(OB, getPrecedence());
OB += " ? ";
Then->printAsOperand(OB);
OB += " : ";
Else->printAsOperand(OB, Prec::Assign, true);
}
};
class MemberExpr : public Node {
const Node *LHS;
const StringView Kind;
const Node *RHS;
public:
MemberExpr(const Node *LHS_, StringView Kind_, const Node *RHS_, Prec Prec_)
: Node(KMemberExpr, Prec_), LHS(LHS_), Kind(Kind_), RHS(RHS_) {}
template <typename Fn> void match(Fn F) const {
F(LHS, Kind, RHS, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
LHS->printAsOperand(OB, getPrecedence(), true);
OB += Kind;
RHS->printAsOperand(OB, getPrecedence(), false);
}
};
class SubobjectExpr : public Node {
const Node *Type;
const Node *SubExpr;
StringView Offset;
NodeArray UnionSelectors;
bool OnePastTheEnd;
public:
SubobjectExpr(const Node *Type_, const Node *SubExpr_, StringView Offset_,
NodeArray UnionSelectors_, bool OnePastTheEnd_)
: Node(KSubobjectExpr), Type(Type_), SubExpr(SubExpr_), Offset(Offset_),
UnionSelectors(UnionSelectors_), OnePastTheEnd(OnePastTheEnd_) {}
template<typename Fn> void match(Fn F) const {
F(Type, SubExpr, Offset, UnionSelectors, OnePastTheEnd);
}
void printLeft(OutputBuffer &OB) const override {
SubExpr->print(OB);
OB += ".<";
Type->print(OB);
OB += " at offset ";
if (Offset.empty()) {
OB += "0";
} else if (Offset[0] == 'n') {
OB += "-";
OB += Offset.dropFront();
} else {
OB += Offset;
}
OB += ">";
}
};
class EnclosingExpr : public Node {
const StringView Prefix;
const Node *Infix;
const StringView Postfix;
public:
EnclosingExpr(StringView Prefix_, const Node *Infix_,
Prec Prec_ = Prec::Primary)
: Node(KEnclosingExpr, Prec_), Prefix(Prefix_), Infix(Infix_) {}
template <typename Fn> void match(Fn F) const {
F(Prefix, Infix, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
OB += Prefix;
OB.printOpen();
Infix->print(OB);
OB.printClose();
OB += Postfix;
}
};
class CastExpr : public Node {
// cast_kind<to>(from)
const StringView CastKind;
const Node *To;
const Node *From;
public:
CastExpr(StringView CastKind_, const Node *To_, const Node *From_, Prec Prec_)
: Node(KCastExpr, Prec_), CastKind(CastKind_), To(To_), From(From_) {}
template <typename Fn> void match(Fn F) const {
F(CastKind, To, From, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
OB += CastKind;
{
ScopedOverride<unsigned> LT(OB.GtIsGt, 0);
OB += "<";
To->printLeft(OB);
OB += ">";
}
OB.printOpen();
From->printAsOperand(OB);
OB.printClose();
}
};
class SizeofParamPackExpr : public Node {
const Node *Pack;
public:
SizeofParamPackExpr(const Node *Pack_)
: Node(KSizeofParamPackExpr), Pack(Pack_) {}
template<typename Fn> void match(Fn F) const { F(Pack); }
void printLeft(OutputBuffer &OB) const override {
OB += "sizeof...";
OB.printOpen();
ParameterPackExpansion PPE(Pack);
PPE.printLeft(OB);
OB.printClose();
}
};
class CallExpr : public Node {
const Node *Callee;
NodeArray Args;
public:
CallExpr(const Node *Callee_, NodeArray Args_, Prec Prec_)
: Node(KCallExpr, Prec_), Callee(Callee_), Args(Args_) {}
template <typename Fn> void match(Fn F) const {
F(Callee, Args, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
Callee->print(OB);
OB.printOpen();
Args.printWithComma(OB);
OB.printClose();
}
};
class NewExpr : public Node {
// new (expr_list) type(init_list)
NodeArray ExprList;
Node *Type;
NodeArray InitList;
bool IsGlobal; // ::operator new ?
bool IsArray; // new[] ?
public:
NewExpr(NodeArray ExprList_, Node *Type_, NodeArray InitList_, bool IsGlobal_,
bool IsArray_, Prec Prec_)
: Node(KNewExpr, Prec_), ExprList(ExprList_), Type(Type_),
InitList(InitList_), IsGlobal(IsGlobal_), IsArray(IsArray_) {}
template<typename Fn> void match(Fn F) const {
F(ExprList, Type, InitList, IsGlobal, IsArray, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
if (IsGlobal)
OB += "::";
OB += "new";
if (IsArray)
OB += "[]";
if (!ExprList.empty()) {
OB.printOpen();
ExprList.printWithComma(OB);
OB.printClose();
}
OB += " ";
Type->print(OB);
if (!InitList.empty()) {
OB.printOpen();
InitList.printWithComma(OB);
OB.printClose();
}
}
};
class DeleteExpr : public Node {
Node *Op;
bool IsGlobal;
bool IsArray;
public:
DeleteExpr(Node *Op_, bool IsGlobal_, bool IsArray_, Prec Prec_)
: Node(KDeleteExpr, Prec_), Op(Op_), IsGlobal(IsGlobal_),
IsArray(IsArray_) {}
template <typename Fn> void match(Fn F) const {
F(Op, IsGlobal, IsArray, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
if (IsGlobal)
OB += "::";
OB += "delete";
if (IsArray)
OB += "[]";
OB += ' ';
Op->print(OB);
}
};
class PrefixExpr : public Node {
StringView Prefix;
Node *Child;
public:
PrefixExpr(StringView Prefix_, Node *Child_, Prec Prec_)
: Node(KPrefixExpr, Prec_), Prefix(Prefix_), Child(Child_) {}
template <typename Fn> void match(Fn F) const {
F(Prefix, Child, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
OB += Prefix;
Child->printAsOperand(OB, getPrecedence());
}
};
class FunctionParam : public Node {
StringView Number;
public:
FunctionParam(StringView Number_) : Node(KFunctionParam), Number(Number_) {}
template<typename Fn> void match(Fn F) const { F(Number); }
void printLeft(OutputBuffer &OB) const override {
OB += "fp";
OB += Number;
}
};
class ConversionExpr : public Node {
const Node *Type;
NodeArray Expressions;
public:
ConversionExpr(const Node *Type_, NodeArray Expressions_, Prec Prec_)
: Node(KConversionExpr, Prec_), Type(Type_), Expressions(Expressions_) {}
template <typename Fn> void match(Fn F) const {
F(Type, Expressions, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
OB.printOpen();
Type->print(OB);
OB.printClose();
OB.printOpen();
Expressions.printWithComma(OB);
OB.printClose();
}
};
class PointerToMemberConversionExpr : public Node {
const Node *Type;
const Node *SubExpr;
StringView Offset;
public:
PointerToMemberConversionExpr(const Node *Type_, const Node *SubExpr_,
StringView Offset_, Prec Prec_)
: Node(KPointerToMemberConversionExpr, Prec_), Type(Type_),
SubExpr(SubExpr_), Offset(Offset_) {}
template <typename Fn> void match(Fn F) const {
F(Type, SubExpr, Offset, getPrecedence());
}
void printLeft(OutputBuffer &OB) const override {
OB.printOpen();
Type->print(OB);
OB.printClose();
OB.printOpen();
SubExpr->print(OB);
OB.printClose();
}
};
class InitListExpr : public Node {
const Node *Ty;
NodeArray Inits;
public:
InitListExpr(const Node *Ty_, NodeArray Inits_)
: Node(KInitListExpr), Ty(Ty_), Inits(Inits_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Inits); }
void printLeft(OutputBuffer &OB) const override {
if (Ty)
Ty->print(OB);
OB += '{';
Inits.printWithComma(OB);
OB += '}';
}
};
class BracedExpr : public Node {
const Node *Elem;
const Node *Init;
bool IsArray;
public:
BracedExpr(const Node *Elem_, const Node *Init_, bool IsArray_)
: Node(KBracedExpr), Elem(Elem_), Init(Init_), IsArray(IsArray_) {}
template<typename Fn> void match(Fn F) const { F(Elem, Init, IsArray); }
void printLeft(OutputBuffer &OB) const override {
if (IsArray) {
OB += '[';
Elem->print(OB);
OB += ']';
} else {
OB += '.';
Elem->print(OB);
}
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
OB += " = ";
Init->print(OB);
}
};
class BracedRangeExpr : public Node {
const Node *First;
const Node *Last;
const Node *Init;
public:
BracedRangeExpr(const Node *First_, const Node *Last_, const Node *Init_)
: Node(KBracedRangeExpr), First(First_), Last(Last_), Init(Init_) {}
template<typename Fn> void match(Fn F) const { F(First, Last, Init); }
void printLeft(OutputBuffer &OB) const override {
OB += '[';
First->print(OB);
OB += " ... ";
Last->print(OB);
OB += ']';
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
OB += " = ";
Init->print(OB);
}
};
class FoldExpr : public Node {
const Node *Pack, *Init;
StringView OperatorName;
bool IsLeftFold;
public:
FoldExpr(bool IsLeftFold_, StringView OperatorName_, const Node *Pack_,
const Node *Init_)
: Node(KFoldExpr), Pack(Pack_), Init(Init_), OperatorName(OperatorName_),
IsLeftFold(IsLeftFold_) {}
template<typename Fn> void match(Fn F) const {
F(IsLeftFold, OperatorName, Pack, Init);
}
void printLeft(OutputBuffer &OB) const override {
auto PrintPack = [&] {
OB.printOpen();
ParameterPackExpansion(Pack).print(OB);
OB.printClose();
};
OB.printOpen();
// Either '[init op ]... op pack' or 'pack op ...[ op init]'
// Refactored to '[(init|pack) op ]...[ op (pack|init)]'
// Fold expr operands are cast-expressions
if (!IsLeftFold || Init != nullptr) {
// '(init|pack) op '
if (IsLeftFold)
Init->printAsOperand(OB, Prec::Cast, true);
else
PrintPack();
OB << " " << OperatorName << " ";
}
OB << "...";
if (IsLeftFold || Init != nullptr) {
// ' op (init|pack)'
OB << " " << OperatorName << " ";
if (IsLeftFold)
PrintPack();
else
Init->printAsOperand(OB, Prec::Cast, true);
}
OB.printClose();
}
};
class ThrowExpr : public Node {
const Node *Op;
public:
ThrowExpr(const Node *Op_) : Node(KThrowExpr), Op(Op_) {}
template<typename Fn> void match(Fn F) const { F(Op); }
void printLeft(OutputBuffer &OB) const override {
OB += "throw ";
Op->print(OB);
}
};
class BoolExpr : public Node {
bool Value;
public:
BoolExpr(bool Value_) : Node(KBoolExpr), Value(Value_) {}
template<typename Fn> void match(Fn F) const { F(Value); }
void printLeft(OutputBuffer &OB) const override {
OB += Value ? StringView("true") : StringView("false");
}
};
class StringLiteral : public Node {
const Node *Type;
public:
StringLiteral(const Node *Type_) : Node(KStringLiteral), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Type); }
void printLeft(OutputBuffer &OB) const override {
OB += "\"<";
Type->print(OB);
OB += ">\"";
}
};
class LambdaExpr : public Node {
const Node *Type;
public:
LambdaExpr(const Node *Type_) : Node(KLambdaExpr), Type(Type_) {}
template<typename Fn> void match(Fn F) const { F(Type); }
void printLeft(OutputBuffer &OB) const override {
OB += "[]";
if (Type->getKind() == KClosureTypeName)
static_cast<const ClosureTypeName *>(Type)->printDeclarator(OB);
OB += "{...}";
}
};
class EnumLiteral : public Node {
// ty(integer)
const Node *Ty;
StringView Integer;
public:
EnumLiteral(const Node *Ty_, StringView Integer_)
: Node(KEnumLiteral), Ty(Ty_), Integer(Integer_) {}
template<typename Fn> void match(Fn F) const { F(Ty, Integer); }
void printLeft(OutputBuffer &OB) const override {
OB.printOpen();
Ty->print(OB);
OB.printClose();
if (Integer[0] == 'n')
OB << "-" << Integer.dropFront(1);
else
OB << Integer;
}
};
class IntegerLiteral : public Node {
StringView Type;
StringView Value;
public:
IntegerLiteral(StringView Type_, StringView Value_)
: Node(KIntegerLiteral), Type(Type_), Value(Value_) {}
template<typename Fn> void match(Fn F) const { F(Type, Value); }
void printLeft(OutputBuffer &OB) const override {
if (Type.size() > 3) {
OB.printOpen();
OB += Type;
OB.printClose();
}
if (Value[0] == 'n') {
OB += '-';
OB += Value.dropFront(1);
} else
OB += Value;
if (Type.size() <= 3)
OB += Type;
}
};
template <class Float> struct FloatData;
namespace float_literal_impl {
constexpr Node::Kind getFloatLiteralKind(float *) {
return Node::KFloatLiteral;
}
constexpr Node::Kind getFloatLiteralKind(double *) {
return Node::KDoubleLiteral;
}
constexpr Node::Kind getFloatLiteralKind(long double *) {
return Node::KLongDoubleLiteral;
}
}
template <class Float> class FloatLiteralImpl : public Node {
const StringView Contents;
static constexpr Kind KindForClass =
float_literal_impl::getFloatLiteralKind((Float *)nullptr);
public:
FloatLiteralImpl(StringView Contents_)
: Node(KindForClass), Contents(Contents_) {}
template<typename Fn> void match(Fn F) const { F(Contents); }
void printLeft(OutputBuffer &OB) const override {
const char *first = Contents.begin();
const char *last = Contents.end() + 1;
const size_t N = FloatData<Float>::mangled_size;
if (static_cast<std::size_t>(last - first) > N) {
last = first + N;
union {
Float value;
char buf[sizeof(Float)];
};
const char *t = first;
char *e = buf;
for (; t != last; ++t, ++e) {
unsigned d1 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
++t;
unsigned d0 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
*e = static_cast<char>((d1 << 4) + d0);
}
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
std::reverse(buf, e);
#endif
char num[FloatData<Float>::max_demangled_size] = {0};
int n = snprintf(num, sizeof(num), FloatData<Float>::spec, value);
OB += StringView(num, num + n);
}
}
};
using FloatLiteral = FloatLiteralImpl<float>;
using DoubleLiteral = FloatLiteralImpl<double>;
using LongDoubleLiteral = FloatLiteralImpl<long double>;
/// Visit the node. Calls \c F(P), where \c P is the node cast to the
/// appropriate derived class.
template<typename Fn>
void Node::visit(Fn F) const {
switch (K) {
#define NODE(X) \
case K##X: \
return F(static_cast<const X *>(this));
#include "ItaniumNodes.def"
}
assert(0 && "unknown mangling node kind");
}
/// Determine the kind of a node from its type.
template<typename NodeT> struct NodeKind;
#define NODE(X) \
template <> struct NodeKind<X> { \
static constexpr Node::Kind Kind = Node::K##X; \
static constexpr const char *name() { return #X; } \
};
#include "ItaniumNodes.def"
template <typename Derived, typename Alloc> struct AbstractManglingParser {
const char *First;
const char *Last;
// Name stack, this is used by the parser to hold temporary names that were
// parsed. The parser collapses multiple names into new nodes to construct
// the AST. Once the parser is finished, names.size() == 1.
PODSmallVector<Node *, 32> Names;
// Substitution table. Itanium supports name substitutions as a means of
// compression. The string "S42_" refers to the 44nd entry (base-36) in this
// table.
PODSmallVector<Node *, 32> Subs;
using TemplateParamList = PODSmallVector<Node *, 8>;
class ScopedTemplateParamList {
AbstractManglingParser *Parser;
size_t OldNumTemplateParamLists;
TemplateParamList Params;
public:
ScopedTemplateParamList(AbstractManglingParser *TheParser)
: Parser(TheParser),
OldNumTemplateParamLists(TheParser->TemplateParams.size()) {
Parser->TemplateParams.push_back(&Params);
}
~ScopedTemplateParamList() {
assert(Parser->TemplateParams.size() >= OldNumTemplateParamLists);
Parser->TemplateParams.dropBack(OldNumTemplateParamLists);
}
};
// Template parameter table. Like the above, but referenced like "T42_".
// This has a smaller size compared to Subs and Names because it can be
// stored on the stack.
TemplateParamList OuterTemplateParams;
// Lists of template parameters indexed by template parameter depth,
// referenced like "TL2_4_". If nonempty, element 0 is always
// OuterTemplateParams; inner elements are always template parameter lists of
// lambda expressions. For a generic lambda with no explicit template
// parameter list, the corresponding parameter list pointer will be null.
PODSmallVector<TemplateParamList *, 4> TemplateParams;
// Set of unresolved forward <template-param> references. These can occur in a
// conversion operator's type, and are resolved in the enclosing <encoding>.
PODSmallVector<ForwardTemplateReference *, 4> ForwardTemplateRefs;
bool TryToParseTemplateArgs = true;
bool PermitForwardTemplateReferences = false;
size_t ParsingLambdaParamsAtLevel = (size_t)-1;
unsigned NumSyntheticTemplateParameters[3] = {};
Alloc ASTAllocator;
AbstractManglingParser(const char *First_, const char *Last_)
: First(First_), Last(Last_) {}
Derived &getDerived() { return static_cast<Derived &>(*this); }
void reset(const char *First_, const char *Last_) {
First = First_;
Last = Last_;
Names.clear();
Subs.clear();
TemplateParams.clear();
ParsingLambdaParamsAtLevel = (size_t)-1;
TryToParseTemplateArgs = true;
PermitForwardTemplateReferences = false;
for (int I = 0; I != 3; ++I)
NumSyntheticTemplateParameters[I] = 0;
ASTAllocator.reset();
}
template <class T, class... Args> Node *make(Args &&... args) {
return ASTAllocator.template makeNode<T>(std::forward<Args>(args)...);
}
template <class It> NodeArray makeNodeArray(It begin, It end) {
size_t sz = static_cast<size_t>(end - begin);
void *mem = ASTAllocator.allocateNodeArray(sz);
Node **data = new (mem) Node *[sz];
std::copy(begin, end, data);
return NodeArray(data, sz);
}
NodeArray popTrailingNodeArray(size_t FromPosition) {
assert(FromPosition <= Names.size());
NodeArray res =
makeNodeArray(Names.begin() + (long)FromPosition, Names.end());
Names.dropBack(FromPosition);
return res;
}
bool consumeIf(StringView S) {
if (StringView(First, Last).startsWith(S)) {
First += S.size();
return true;
}
return false;
}
bool consumeIf(char C) {
if (First != Last && *First == C) {
++First;
return true;
}
return false;
}
char consume() { return First != Last ? *First++ : '\0'; }
char look(unsigned Lookahead = 0) const {
if (static_cast<size_t>(Last - First) <= Lookahead)
return '\0';
return First[Lookahead];
}
size_t numLeft() const { return static_cast<size_t>(Last - First); }
StringView parseNumber(bool AllowNegative = false);
Qualifiers parseCVQualifiers();
bool parsePositiveInteger(size_t *Out);
StringView parseBareSourceName();
bool parseSeqId(size_t *Out);
Node *parseSubstitution();
Node *parseTemplateParam();
Node *parseTemplateParamDecl();
Node *parseTemplateArgs(bool TagTemplates = false);
Node *parseTemplateArg();
/// Parse the <expr> production.
Node *parseExpr();
Node *parsePrefixExpr(StringView Kind, Node::Prec Prec);
Node *parseBinaryExpr(StringView Kind, Node::Prec Prec);
Node *parseIntegerLiteral(StringView Lit);
Node *parseExprPrimary();
template <class Float> Node *parseFloatingLiteral();
Node *parseFunctionParam();
Node *parseConversionExpr();
Node *parseBracedExpr();
Node *parseFoldExpr();
Node *parsePointerToMemberConversionExpr(Node::Prec Prec);
Node *parseSubobjectExpr();
/// Parse the <type> production.
Node *parseType();
Node *parseFunctionType();
Node *parseVectorType();
Node *parseDecltype();
Node *parseArrayType();
Node *parsePointerToMemberType();
Node *parseClassEnumType();
Node *parseQualifiedType();
Node *parseEncoding();
bool parseCallOffset();
Node *parseSpecialName();
/// Holds some extra information about a <name> that is being parsed. This
/// information is only pertinent if the <name> refers to an <encoding>.
struct NameState {
bool CtorDtorConversion = false;
bool EndsWithTemplateArgs = false;
Qualifiers CVQualifiers = QualNone;
FunctionRefQual ReferenceQualifier = FrefQualNone;
size_t ForwardTemplateRefsBegin;
NameState(AbstractManglingParser *Enclosing)
: ForwardTemplateRefsBegin(Enclosing->ForwardTemplateRefs.size()) {}
};
bool resolveForwardTemplateRefs(NameState &State) {
size_t I = State.ForwardTemplateRefsBegin;
size_t E = ForwardTemplateRefs.size();
for (; I < E; ++I) {
size_t Idx = ForwardTemplateRefs[I]->Index;
if (TemplateParams.empty() || !TemplateParams[0] ||
Idx >= TemplateParams[0]->size())
return true;
ForwardTemplateRefs[I]->Ref = (*TemplateParams[0])[Idx];
}
ForwardTemplateRefs.dropBack(State.ForwardTemplateRefsBegin);
return false;
}
/// Parse the <name> production>
Node *parseName(NameState *State = nullptr);
Node *parseLocalName(NameState *State);
Node *parseOperatorName(NameState *State);
bool parseModuleNameOpt(ModuleName *&Module);
Node *parseUnqualifiedName(NameState *State, Node *Scope, ModuleName *Module);
Node *parseUnnamedTypeName(NameState *State);
Node *parseSourceName(NameState *State);
Node *parseUnscopedName(NameState *State, bool *isSubstName);
Node *parseNestedName(NameState *State);
Node *parseCtorDtorName(Node *&SoFar, NameState *State);
Node *parseAbiTags(Node *N);
struct OperatorInfo {
enum OIKind : unsigned char {
Prefix, // Prefix unary: @ expr
Postfix, // Postfix unary: expr @
Binary, // Binary: lhs @ rhs
Array, // Array index: lhs [ rhs ]
Member, // Member access: lhs @ rhs
New, // New
Del, // Delete
Call, // Function call: expr (expr*)
CCast, // C cast: (type)expr
Conditional, // Conditional: expr ? expr : expr
NameOnly, // Overload only, not allowed in expression.
// Below do not have operator names
NamedCast, // Named cast, @<type>(expr)
OfIdOp, // alignof, sizeof, typeid
Unnameable = NamedCast,
};
char Enc[2]; // Encoding
OIKind Kind; // Kind of operator
bool Flag : 1; // Entry-specific flag
Node::Prec Prec : 7; // Precedence
const char *Name; // Spelling
public:
constexpr OperatorInfo(const char (&E)[3], OIKind K, bool F, Node::Prec P,
const char *N)
: Enc{E[0], E[1]}, Kind{K}, Flag{F}, Prec{P}, Name{N} {}
public:
bool operator<(const OperatorInfo &Other) const {
return *this < Other.Enc;
}
bool operator<(const char *Peek) const {
return Enc[0] < Peek[0] || (Enc[0] == Peek[0] && Enc[1] < Peek[1]);
}
bool operator==(const char *Peek) const {
return Enc[0] == Peek[0] && Enc[1] == Peek[1];
}
bool operator!=(const char *Peek) const { return !this->operator==(Peek); }
public:
StringView getSymbol() const {
StringView Res = Name;
if (Kind < Unnameable) {
assert(Res.startsWith("operator") &&
"operator name does not start with 'operator'");
Res = Res.dropFront(sizeof("operator") - 1);
Res.consumeFront(' ');
}
return Res;
}
StringView getName() const { return Name; }
OIKind getKind() const { return Kind; }
bool getFlag() const { return Flag; }
Node::Prec getPrecedence() const { return Prec; }
};
static const OperatorInfo Ops[];
static const size_t NumOps;
const OperatorInfo *parseOperatorEncoding();
/// Parse the <unresolved-name> production.
Node *parseUnresolvedName(bool Global);
Node *parseSimpleId();
Node *parseBaseUnresolvedName();
Node *parseUnresolvedType();
Node *parseDestructorName();
/// Top-level entry point into the parser.
Node *parse();
};
const char* parse_discriminator(const char* first, const char* last);
// <name> ::= <nested-name> // N
// ::= <local-name> # See Scope Encoding below // Z
// ::= <unscoped-template-name> <template-args>
// ::= <unscoped-name>
//
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseName(NameState *State) {
if (look() == 'N')
return getDerived().parseNestedName(State);
if (look() == 'Z')
return getDerived().parseLocalName(State);
Node *Result = nullptr;
bool IsSubst = false;
Result = getDerived().parseUnscopedName(State, &IsSubst);
if (!Result)
return nullptr;
if (look() == 'I') {
// ::= <unscoped-template-name> <template-args>
if (!IsSubst)
// An unscoped-template-name is substitutable.
Subs.push_back(Result);
Node *TA = getDerived().parseTemplateArgs(State != nullptr);
if (TA == nullptr)
return nullptr;
if (State)
State->EndsWithTemplateArgs = true;
Result = make<NameWithTemplateArgs>(Result, TA);
} else if (IsSubst) {
// The substitution case must be followed by <template-args>.
return nullptr;
}
return Result;
}
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// := Z <function encoding> Ed [ <parameter number> ] _ <entity name>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseLocalName(NameState *State) {
if (!consumeIf('Z'))
return nullptr;
Node *Encoding = getDerived().parseEncoding();
if (Encoding == nullptr || !consumeIf('E'))
return nullptr;
if (consumeIf('s')) {
First = parse_discriminator(First, Last);
auto *StringLitName = make<NameType>("string literal");
if (!StringLitName)
return nullptr;
return make<LocalName>(Encoding, StringLitName);
}
if (consumeIf('d')) {
parseNumber(true);
if (!consumeIf('_'))
return nullptr;
Node *N = getDerived().parseName(State);
if (N == nullptr)
return nullptr;
return make<LocalName>(Encoding, N);
}
Node *Entity = getDerived().parseName(State);
if (Entity == nullptr)
return nullptr;
First = parse_discriminator(First, Last);
return make<LocalName>(Encoding, Entity);
}
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
// [*] extension
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseUnscopedName(NameState *State,
bool *IsSubst) {
Node *Std = nullptr;
if (consumeIf("St")) {
Std = make<NameType>("std");
if (Std == nullptr)
return nullptr;
}
Node *Res = nullptr;
ModuleName *Module = nullptr;
if (look() == 'S') {
Node *S = getDerived().parseSubstitution();
if (!S)
return nullptr;
if (S->getKind() == Node::KModuleName)
Module = static_cast<ModuleName *>(S);
else if (IsSubst && Std == nullptr) {
Res = S;
*IsSubst = true;
} else {
return nullptr;
}
}
if (Res == nullptr || Std != nullptr) {
Res = getDerived().parseUnqualifiedName(State, Std, Module);
}
return Res;
}
// <unqualified-name> ::= [<module-name>] L? <operator-name> [<abi-tags>]
// ::= [<module-name>] <ctor-dtor-name> [<abi-tags>]
// ::= [<module-name>] L? <source-name> [<abi-tags>]
// ::= [<module-name>] L? <unnamed-type-name> [<abi-tags>]
// # structured binding declaration
// ::= [<module-name>] L? DC <source-name>+ E
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseUnqualifiedName(
NameState *State, Node *Scope, ModuleName *Module) {
if (getDerived().parseModuleNameOpt(Module))
return nullptr;
consumeIf('L');
Node *Result;
if (look() >= '1' && look() <= '9') {
Result = getDerived().parseSourceName(State);
} else if (look() == 'U') {
Result = getDerived().parseUnnamedTypeName(State);
} else if (consumeIf("DC")) {
// Structured binding
size_t BindingsBegin = Names.size();
do {
Node *Binding = getDerived().parseSourceName(State);
if (Binding == nullptr)
return nullptr;
Names.push_back(Binding);
} while (!consumeIf('E'));
Result = make<StructuredBindingName>(popTrailingNodeArray(BindingsBegin));
} else if (look() == 'C' || look() == 'D') {
// A <ctor-dtor-name>.
if (Scope == nullptr || Module != nullptr)
return nullptr;
Result = getDerived().parseCtorDtorName(Scope, State);
} else {
Result = getDerived().parseOperatorName(State);
}
if (Result != nullptr && Module != nullptr)
Result = make<ModuleEntity>(Module, Result);
if (Result != nullptr)
Result = getDerived().parseAbiTags(Result);
if (Result != nullptr && Scope != nullptr)
Result = make<NestedName>(Scope, Result);
return Result;
}
// <module-name> ::= <module-subname>
// ::= <module-name> <module-subname>
// ::= <substitution> # passed in by caller
// <module-subname> ::= W <source-name>
// ::= W P <source-name>
template <typename Derived, typename Alloc>
bool AbstractManglingParser<Derived, Alloc>::parseModuleNameOpt(
ModuleName *&Module) {
while (consumeIf('W')) {
bool IsPartition = consumeIf('P');
Node *Sub = getDerived().parseSourceName(nullptr);
if (!Sub)
return true;
Module =
static_cast<ModuleName *>(make<ModuleName>(Module, Sub, IsPartition));
Subs.push_back(Module);
}
return false;
}
// <unnamed-type-name> ::= Ut [<nonnegative number>] _
// ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
//
// <lambda-sig> ::= <parameter type>+ # Parameter types or "v" if the lambda has no parameters
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseUnnamedTypeName(NameState *State) {
// <template-params> refer to the innermost <template-args>. Clear out any
// outer args that we may have inserted into TemplateParams.
if (State != nullptr)
TemplateParams.clear();
if (consumeIf("Ut")) {
StringView Count = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<UnnamedTypeName>(Count);
}
if (consumeIf("Ul")) {
ScopedOverride<size_t> SwapParams(ParsingLambdaParamsAtLevel,
TemplateParams.size());
ScopedTemplateParamList LambdaTemplateParams(this);
size_t ParamsBegin = Names.size();
while (look() == 'T' &&
StringView("yptn").find(look(1)) != StringView::npos) {
Node *T = parseTemplateParamDecl();
if (!T)
return nullptr;
Names.push_back(T);
}
NodeArray TempParams = popTrailingNodeArray(ParamsBegin);
// FIXME: If TempParams is empty and none of the function parameters
// includes 'auto', we should remove LambdaTemplateParams from the
// TemplateParams list. Unfortunately, we don't find out whether there are
// any 'auto' parameters until too late in an example such as:
//
// template<typename T> void f(
// decltype([](decltype([]<typename T>(T v) {}),
// auto) {})) {}
// template<typename T> void f(
// decltype([](decltype([]<typename T>(T w) {}),
// int) {})) {}
//
// Here, the type of v is at level 2 but the type of w is at level 1. We
// don't find this out until we encounter the type of the next parameter.
//
// However, compilers can't actually cope with the former example in
// practice, and it's likely to be made ill-formed in future, so we don't
// need to support it here.
//
// If we encounter an 'auto' in the function parameter types, we will
// recreate a template parameter scope for it, but any intervening lambdas
// will be parsed in the 'wrong' template parameter depth.
if (TempParams.empty())
TemplateParams.pop_back();
if (!consumeIf("vE")) {
do {
Node *P = getDerived().parseType();
if (P == nullptr)
return nullptr;
Names.push_back(P);
} while (!consumeIf('E'));
}
NodeArray Params = popTrailingNodeArray(ParamsBegin);
StringView Count = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<ClosureTypeName>(TempParams, Params, Count);
}
if (consumeIf("Ub")) {
(void)parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<NameType>("'block-literal'");
}
return nullptr;
}
// <source-name> ::= <positive length number> <identifier>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseSourceName(NameState *) {
size_t Length = 0;
if (parsePositiveInteger(&Length))
return nullptr;
if (numLeft() < Length || Length == 0)
return nullptr;
StringView Name(First, First + Length);
First += Length;
if (Name.startsWith("_GLOBAL__N"))
return make<NameType>("(anonymous namespace)");
return make<NameType>(Name);
}
// Operator encodings
template <typename Derived, typename Alloc>
const typename AbstractManglingParser<
Derived, Alloc>::OperatorInfo AbstractManglingParser<Derived,
Alloc>::Ops[] = {
// Keep ordered by encoding
{"aN", OperatorInfo::Binary, false, Node::Prec::Assign, "operator&="},
{"aS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator="},
{"aa", OperatorInfo::Binary, false, Node::Prec::AndIf, "operator&&"},
{"ad", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator&"},
{"an", OperatorInfo::Binary, false, Node::Prec::And, "operator&"},
{"at", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Unary, "alignof "},
{"aw", OperatorInfo::NameOnly, false, Node::Prec::Primary,
"operator co_await"},
{"az", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Unary, "alignof "},
{"cc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "const_cast"},
{"cl", OperatorInfo::Call, false, Node::Prec::Postfix, "operator()"},
{"cm", OperatorInfo::Binary, false, Node::Prec::Comma, "operator,"},
{"co", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator~"},
{"cv", OperatorInfo::CCast, false, Node::Prec::Cast, "operator"}, // C Cast
{"dV", OperatorInfo::Binary, false, Node::Prec::Assign, "operator/="},
{"da", OperatorInfo::Del, /*Ary*/ true, Node::Prec::Unary,
"operator delete[]"},
{"dc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "dynamic_cast"},
{"de", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator*"},
{"dl", OperatorInfo::Del, /*Ary*/ false, Node::Prec::Unary,
"operator delete"},
{"ds", OperatorInfo::Member, /*Named*/ false, Node::Prec::PtrMem,
"operator.*"},
{"dt", OperatorInfo::Member, /*Named*/ false, Node::Prec::Postfix,
"operator."},
{"dv", OperatorInfo::Binary, false, Node::Prec::Assign, "operator/"},
{"eO", OperatorInfo::Binary, false, Node::Prec::Assign, "operator^="},
{"eo", OperatorInfo::Binary, false, Node::Prec::Xor, "operator^"},
{"eq", OperatorInfo::Binary, false, Node::Prec::Equality, "operator=="},
{"ge", OperatorInfo::Binary, false, Node::Prec::Relational, "operator>="},
{"gt", OperatorInfo::Binary, false, Node::Prec::Relational, "operator>"},
{"ix", OperatorInfo::Array, false, Node::Prec::Postfix, "operator[]"},
{"lS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator<<="},
{"le", OperatorInfo::Binary, false, Node::Prec::Relational, "operator<="},
{"ls", OperatorInfo::Binary, false, Node::Prec::Shift, "operator<<"},
{"lt", OperatorInfo::Binary, false, Node::Prec::Relational, "operator<"},
{"mI", OperatorInfo::Binary, false, Node::Prec::Assign, "operator-="},
{"mL", OperatorInfo::Binary, false, Node::Prec::Assign, "operator*="},
{"mi", OperatorInfo::Binary, false, Node::Prec::Additive, "operator-"},
{"ml", OperatorInfo::Binary, false, Node::Prec::Multiplicative,
"operator*"},
{"mm", OperatorInfo::Postfix, false, Node::Prec::Postfix, "operator--"},
{"na", OperatorInfo::New, /*Ary*/ true, Node::Prec::Unary,
"operator new[]"},
{"ne", OperatorInfo::Binary, false, Node::Prec::Equality, "operator!="},
{"ng", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator-"},
{"nt", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator!"},
{"nw", OperatorInfo::New, /*Ary*/ false, Node::Prec::Unary, "operator new"},
{"oR", OperatorInfo::Binary, false, Node::Prec::Assign, "operator|="},
{"oo", OperatorInfo::Binary, false, Node::Prec::OrIf, "operator||"},
{"or", OperatorInfo::Binary, false, Node::Prec::Ior, "operator|"},
{"pL", OperatorInfo::Binary, false, Node::Prec::Assign, "operator+="},
{"pl", OperatorInfo::Binary, false, Node::Prec::Additive, "operator+"},
{"pm", OperatorInfo::Member, /*Named*/ false, Node::Prec::PtrMem,
"operator->*"},
{"pp", OperatorInfo::Postfix, false, Node::Prec::Postfix, "operator++"},
{"ps", OperatorInfo::Prefix, false, Node::Prec::Unary, "operator+"},
{"pt", OperatorInfo::Member, /*Named*/ true, Node::Prec::Postfix,
"operator->"},
{"qu", OperatorInfo::Conditional, false, Node::Prec::Conditional,
"operator?"},
{"rM", OperatorInfo::Binary, false, Node::Prec::Assign, "operator%="},
{"rS", OperatorInfo::Binary, false, Node::Prec::Assign, "operator>>="},
{"rc", OperatorInfo::NamedCast, false, Node::Prec::Postfix,
"reinterpret_cast"},
{"rm", OperatorInfo::Binary, false, Node::Prec::Multiplicative,
"operator%"},
{"rs", OperatorInfo::Binary, false, Node::Prec::Shift, "operator>>"},
{"sc", OperatorInfo::NamedCast, false, Node::Prec::Postfix, "static_cast"},
{"ss", OperatorInfo::Binary, false, Node::Prec::Spaceship, "operator<=>"},
{"st", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Unary, "sizeof "},
{"sz", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Unary, "sizeof "},
{"te", OperatorInfo::OfIdOp, /*Type*/ false, Node::Prec::Postfix,
"typeid "},
{"ti", OperatorInfo::OfIdOp, /*Type*/ true, Node::Prec::Postfix, "typeid "},
};
template <typename Derived, typename Alloc>
const size_t AbstractManglingParser<Derived, Alloc>::NumOps = sizeof(Ops) /
sizeof(Ops[0]);
// If the next 2 chars are an operator encoding, consume them and return their
// OperatorInfo. Otherwise return nullptr.
template <typename Derived, typename Alloc>
const typename AbstractManglingParser<Derived, Alloc>::OperatorInfo *
AbstractManglingParser<Derived, Alloc>::parseOperatorEncoding() {
if (numLeft() < 2)
return nullptr;
auto Op = std::lower_bound(
&Ops[0], &Ops[NumOps], First,
[](const OperatorInfo &Op_, const char *Enc_) { return Op_ < Enc_; });
if (Op == &Ops[NumOps] || *Op != First)
return nullptr;
First += 2;
return Op;
}
// <operator-name> ::= See parseOperatorEncoding()
// ::= li <source-name> # operator ""
// ::= v <digit> <source-name> # vendor extended operator
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseOperatorName(NameState *State) {
if (const auto *Op = parseOperatorEncoding()) {
if (Op->getKind() == OperatorInfo::CCast) {
// ::= cv <type> # (cast)
ScopedOverride<bool> SaveTemplate(TryToParseTemplateArgs, false);
// If we're parsing an encoding, State != nullptr and the conversion
// operators' <type> could have a <template-param> that refers to some
// <template-arg>s further ahead in the mangled name.
ScopedOverride<bool> SavePermit(PermitForwardTemplateReferences,
PermitForwardTemplateReferences ||
State != nullptr);
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
if (State) State->CtorDtorConversion = true;
return make<ConversionOperatorType>(Ty);
}
if (Op->getKind() >= OperatorInfo::Unnameable)
/* Not a nameable operator. */
return nullptr;
if (Op->getKind() == OperatorInfo::Member && !Op->getFlag())
/* Not a nameable MemberExpr */
return nullptr;
return make<NameType>(Op->getName());
}
if (consumeIf("li")) {
// ::= li <source-name> # operator ""
Node *SN = getDerived().parseSourceName(State);
if (SN == nullptr)
return nullptr;
return make<LiteralOperator>(SN);
}
if (consumeIf('v')) {
// ::= v <digit> <source-name> # vendor extended operator
if (look() >= '0' && look() <= '9') {
First++;
Node *SN = getDerived().parseSourceName(State);
if (SN == nullptr)
return nullptr;
return make<ConversionOperatorType>(SN);
}
return nullptr;
}
return nullptr;
}
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
// extension ::= C4 # gcc old-style "[unified]" constructor
// extension ::= C5 # the COMDAT used for ctors
// ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
// extension ::= D4 # gcc old-style "[unified]" destructor
// extension ::= D5 # the COMDAT used for dtors
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseCtorDtorName(Node *&SoFar,
NameState *State) {
if (SoFar->getKind() == Node::KSpecialSubstitution) {
// Expand the special substitution.
SoFar = make<ExpandedSpecialSubstitution>(
static_cast<SpecialSubstitution *>(SoFar));
if (!SoFar)
return nullptr;
}
if (consumeIf('C')) {
bool IsInherited = consumeIf('I');
if (look() != '1' && look() != '2' && look() != '3' && look() != '4' &&
look() != '5')
return nullptr;
int Variant = look() - '0';
++First;
if (State) State->CtorDtorConversion = true;
if (IsInherited) {
if (getDerived().parseName(State) == nullptr)
return nullptr;
}
return make<CtorDtorName>(SoFar, /*IsDtor=*/false, Variant);
}
if (look() == 'D' && (look(1) == '0' || look(1) == '1' || look(1) == '2' ||
look(1) == '4' || look(1) == '5')) {
int Variant = look(1) - '0';
First += 2;
if (State) State->CtorDtorConversion = true;
return make<CtorDtorName>(SoFar, /*IsDtor=*/true, Variant);
}
return nullptr;
}
// <nested-name> ::= N [<CV-Qualifiers>] [<ref-qualifier>] <prefix>
// <unqualified-name> E
// ::= N [<CV-Qualifiers>] [<ref-qualifier>] <template-prefix>
// <template-args> E
//
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= <decltype>
// ::= # empty
// ::= <substitution>
// ::= <prefix> <data-member-prefix>
// [*] extension
//
// <data-member-prefix> := <member source-name> [<template-args>] M
//
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseNestedName(NameState *State) {
if (!consumeIf('N'))
return nullptr;
Qualifiers CVTmp = parseCVQualifiers();
if (State) State->CVQualifiers = CVTmp;
if (consumeIf('O')) {
if (State) State->ReferenceQualifier = FrefQualRValue;
} else if (consumeIf('R')) {
if (State) State->ReferenceQualifier = FrefQualLValue;
} else {
if (State) State->ReferenceQualifier = FrefQualNone;
}
Node *SoFar = nullptr;
while (!consumeIf('E')) {
if (State)
// Only set end-with-template on the case that does that.
State->EndsWithTemplateArgs = false;
if (look() == 'T') {
// ::= <template-param>
if (SoFar != nullptr)
return nullptr; // Cannot have a prefix.
SoFar = getDerived().parseTemplateParam();
} else if (look() == 'I') {
// ::= <template-prefix> <template-args>
if (SoFar == nullptr)
return nullptr; // Must have a prefix.
Node *TA = getDerived().parseTemplateArgs(State != nullptr);
if (TA == nullptr)
return nullptr;
if (SoFar->getKind() == Node::KNameWithTemplateArgs)
// Semantically <template-args> <template-args> cannot be generated by a
// C++ entity. There will always be [something like] a name between
// them.
return nullptr;
if (State)
State->EndsWithTemplateArgs = true;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
} else if (look() == 'D' && (look(1) == 't' || look(1) == 'T')) {
// ::= <decltype>
if (SoFar != nullptr)
return nullptr; // Cannot have a prefix.
SoFar = getDerived().parseDecltype();
} else {
ModuleName *Module = nullptr;
if (look() == 'S') {
// ::= <substitution>
Node *S = nullptr;
if (look(1) == 't') {
First += 2;
S = make<NameType>("std");
} else {
S = getDerived().parseSubstitution();
}
if (!S)
return nullptr;
if (S->getKind() == Node::KModuleName) {
Module = static_cast<ModuleName *>(S);
} else if (SoFar != nullptr) {
return nullptr; // Cannot have a prefix.
} else {
SoFar = S;
continue; // Do not push a new substitution.
}
}
// ::= [<prefix>] <unqualified-name>
SoFar = getDerived().parseUnqualifiedName(State, SoFar, Module);
}
if (SoFar == nullptr)
return nullptr;
Subs.push_back(SoFar);
// No longer used.
// <data-member-prefix> := <member source-name> [<template-args>] M
consumeIf('M');
}
if (SoFar == nullptr || Subs.empty())
return nullptr;
Subs.pop_back();
return SoFar;
}
// <simple-id> ::= <source-name> [ <template-args> ]
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseSimpleId() {
Node *SN = getDerived().parseSourceName(/*NameState=*/nullptr);
if (SN == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
return make<NameWithTemplateArgs>(SN, TA);
}
return SN;
}
// <destructor-name> ::= <unresolved-type> # e.g., ~T or ~decltype(f())
// ::= <simple-id> # e.g., ~A<2*N>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseDestructorName() {
Node *Result;
if (std::isdigit(look()))
Result = getDerived().parseSimpleId();
else
Result = getDerived().parseUnresolvedType();
if (Result == nullptr)
return nullptr;
return make<DtorName>(Result);
}
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <substitution>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedType() {
if (look() == 'T') {
Node *TP = getDerived().parseTemplateParam();
if (TP == nullptr)
return nullptr;
Subs.push_back(TP);
return TP;
}
if (look() == 'D') {
Node *DT = getDerived().parseDecltype();
if (DT == nullptr)
return nullptr;
Subs.push_back(DT);
return DT;
}
return getDerived().parseSubstitution();
}
// <base-unresolved-name> ::= <simple-id> # unresolved name
// extension ::= <operator-name> # unresolved operator-function-id
// extension ::= <operator-name> <template-args> # unresolved operator template-id
// ::= on <operator-name> # unresolved operator-function-id
// ::= on <operator-name> <template-args> # unresolved operator template-id
// ::= dn <destructor-name> # destructor or pseudo-destructor;
// # e.g. ~X or ~X<N-1>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseBaseUnresolvedName() {
if (std::isdigit(look()))
return getDerived().parseSimpleId();
if (consumeIf("dn"))
return getDerived().parseDestructorName();
consumeIf("on");
Node *Oper = getDerived().parseOperatorName(/*NameState=*/nullptr);
if (Oper == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
return make<NameWithTemplateArgs>(Oper, TA);
}
return Oper;
}
// <unresolved-name>
// extension ::= srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
// ::= [gs] <base-unresolved-name> # x or (with "gs") ::x
// ::= [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
// # A::x, N::y, A<T>::z; "gs" means leading "::"
// [gs] has been parsed by caller.
// ::= sr <unresolved-type> <base-unresolved-name> # T::x / decltype(p)::x
// extension ::= sr <unresolved-type> <template-args> <base-unresolved-name>
// # T::N::x /decltype(p)::N::x
// (ignored) ::= srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
//
// <unresolved-qualifier-level> ::= <simple-id>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseUnresolvedName(bool Global) {
Node *SoFar = nullptr;
// srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
// srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
if (consumeIf("srN")) {
SoFar = getDerived().parseUnresolvedType();
if (SoFar == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
if (!SoFar)
return nullptr;
}
while (!consumeIf('E')) {
Node *Qual = getDerived().parseSimpleId();
if (Qual == nullptr)
return nullptr;
SoFar = make<QualifiedName>(SoFar, Qual);
if (!SoFar)
return nullptr;
}
Node *Base = getDerived().parseBaseUnresolvedName();
if (Base == nullptr)
return nullptr;
return make<QualifiedName>(SoFar, Base);
}
// [gs] <base-unresolved-name> # x or (with "gs") ::x
if (!consumeIf("sr")) {
SoFar = getDerived().parseBaseUnresolvedName();
if (SoFar == nullptr)
return nullptr;
if (Global)
SoFar = make<GlobalQualifiedName>(SoFar);
return SoFar;
}
// [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
if (std::isdigit(look())) {
do {
Node *Qual = getDerived().parseSimpleId();
if (Qual == nullptr)
return nullptr;
if (SoFar)
SoFar = make<QualifiedName>(SoFar, Qual);
else if (Global)
SoFar = make<GlobalQualifiedName>(Qual);
else
SoFar = Qual;
if (!SoFar)
return nullptr;
} while (!consumeIf('E'));
}
// sr <unresolved-type> <base-unresolved-name>
// sr <unresolved-type> <template-args> <base-unresolved-name>
else {
SoFar = getDerived().parseUnresolvedType();
if (SoFar == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
if (!SoFar)
return nullptr;
}
}
assert(SoFar != nullptr);
Node *Base = getDerived().parseBaseUnresolvedName();
if (Base == nullptr)
return nullptr;
return make<QualifiedName>(SoFar, Base);
}
// <abi-tags> ::= <abi-tag> [<abi-tags>]
// <abi-tag> ::= B <source-name>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseAbiTags(Node *N) {
while (consumeIf('B')) {
StringView SN = parseBareSourceName();
if (SN.empty())
return nullptr;
N = make<AbiTagAttr>(N, SN);
if (!N)
return nullptr;
}
return N;
}
// <number> ::= [n] <non-negative decimal integer>
template <typename Alloc, typename Derived>
StringView
AbstractManglingParser<Alloc, Derived>::parseNumber(bool AllowNegative) {
const char *Tmp = First;
if (AllowNegative)
consumeIf('n');
if (numLeft() == 0 || !std::isdigit(*First))
return StringView();
while (numLeft() != 0 && std::isdigit(*First))
++First;
return StringView(Tmp, First);
}
// <positive length number> ::= [0-9]*
template <typename Alloc, typename Derived>
bool AbstractManglingParser<Alloc, Derived>::parsePositiveInteger(size_t *Out) {
*Out = 0;
if (look() < '0' || look() > '9')
return true;
while (look() >= '0' && look() <= '9') {
*Out *= 10;
*Out += static_cast<size_t>(consume() - '0');
}
return false;
}
template <typename Alloc, typename Derived>
StringView AbstractManglingParser<Alloc, Derived>::parseBareSourceName() {
size_t Int = 0;
if (parsePositiveInteger(&Int) || numLeft() < Int)
return StringView();
StringView R(First, First + Int);
First += Int;
return R;
}
// <function-type> ::= [<CV-qualifiers>] [<exception-spec>] [Dx] F [Y] <bare-function-type> [<ref-qualifier>] E
//
// <exception-spec> ::= Do # non-throwing exception-specification (e.g., noexcept, throw())
// ::= DO <expression> E # computed (instantiation-dependent) noexcept
// ::= Dw <type>+ E # dynamic exception specification with instantiation-dependent types
//
// <ref-qualifier> ::= R # & ref-qualifier
// <ref-qualifier> ::= O # && ref-qualifier
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseFunctionType() {
Qualifiers CVQuals = parseCVQualifiers();
Node *ExceptionSpec = nullptr;
if (consumeIf("Do")) {
ExceptionSpec = make<NameType>("noexcept");
if (!ExceptionSpec)
return nullptr;
} else if (consumeIf("DO")) {
Node *E = getDerived().parseExpr();
if (E == nullptr || !consumeIf('E'))
return nullptr;
ExceptionSpec = make<NoexceptSpec>(E);
if (!ExceptionSpec)
return nullptr;
} else if (consumeIf("Dw")) {
size_t SpecsBegin = Names.size();
while (!consumeIf('E')) {
Node *T = getDerived().parseType();
if (T == nullptr)
return nullptr;
Names.push_back(T);
}
ExceptionSpec =
make<DynamicExceptionSpec>(popTrailingNodeArray(SpecsBegin));
if (!ExceptionSpec)
return nullptr;
}
consumeIf("Dx"); // transaction safe
if (!consumeIf('F'))
return nullptr;
consumeIf('Y'); // extern "C"
Node *ReturnType = getDerived().parseType();
if (ReturnType == nullptr)
return nullptr;
FunctionRefQual ReferenceQualifier = FrefQualNone;
size_t ParamsBegin = Names.size();
while (true) {
if (consumeIf('E'))
break;
if (consumeIf('v'))
continue;
if (consumeIf("RE")) {
ReferenceQualifier = FrefQualLValue;
break;
}
if (consumeIf("OE")) {
ReferenceQualifier = FrefQualRValue;
break;
}
Node *T = getDerived().parseType();
if (T == nullptr)
return nullptr;
Names.push_back(T);
}
NodeArray Params = popTrailingNodeArray(ParamsBegin);
return make<FunctionType>(ReturnType, Params, CVQuals,
ReferenceQualifier, ExceptionSpec);
}
// extension:
// <vector-type> ::= Dv <positive dimension number> _ <extended element type>
// ::= Dv [<dimension expression>] _ <element type>
// <extended element type> ::= <element type>
// ::= p # AltiVec vector pixel
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseVectorType() {
if (!consumeIf("Dv"))
return nullptr;
if (look() >= '1' && look() <= '9') {
Node *DimensionNumber = make<NameType>(parseNumber());
if (!DimensionNumber)
return nullptr;
if (!consumeIf('_'))
return nullptr;
if (consumeIf('p'))
return make<PixelVectorType>(DimensionNumber);
Node *ElemType = getDerived().parseType();
if (ElemType == nullptr)
return nullptr;
return make<VectorType>(ElemType, DimensionNumber);
}
if (!consumeIf('_')) {
Node *DimExpr = getDerived().parseExpr();
if (!DimExpr)
return nullptr;
if (!consumeIf('_'))
return nullptr;
Node *ElemType = getDerived().parseType();
if (!ElemType)
return nullptr;
return make<VectorType>(ElemType, DimExpr);
}
Node *ElemType = getDerived().parseType();
if (!ElemType)
return nullptr;
return make<VectorType>(ElemType, /*Dimension=*/nullptr);
}
// <decltype> ::= Dt <expression> E # decltype of an id-expression or class member access (C++0x)
// ::= DT <expression> E # decltype of an expression (C++0x)
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseDecltype() {
if (!consumeIf('D'))
return nullptr;
if (!consumeIf('t') && !consumeIf('T'))
return nullptr;
Node *E = getDerived().parseExpr();
if (E == nullptr)
return nullptr;
if (!consumeIf('E'))
return nullptr;
return make<EnclosingExpr>("decltype", E);
}
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseArrayType() {
if (!consumeIf('A'))
return nullptr;
Node *Dimension = nullptr;
if (std::isdigit(look())) {
Dimension = make<NameType>(parseNumber());
if (!Dimension)
return nullptr;
if (!consumeIf('_'))
return nullptr;
} else if (!consumeIf('_')) {
Node *DimExpr = getDerived().parseExpr();
if (DimExpr == nullptr)
return nullptr;
if (!consumeIf('_'))
return nullptr;
Dimension = DimExpr;
}
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
return make<ArrayType>(Ty, Dimension);
}
// <pointer-to-member-type> ::= M <class type> <member type>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parsePointerToMemberType() {
if (!consumeIf('M'))
return nullptr;
Node *ClassType = getDerived().parseType();
if (ClassType == nullptr)
return nullptr;
Node *MemberType = getDerived().parseType();
if (MemberType == nullptr)
return nullptr;
return make<PointerToMemberType>(ClassType, MemberType);
}
// <class-enum-type> ::= <name> # non-dependent type name, dependent type name, or dependent typename-specifier
// ::= Ts <name> # dependent elaborated type specifier using 'struct' or 'class'
// ::= Tu <name> # dependent elaborated type specifier using 'union'
// ::= Te <name> # dependent elaborated type specifier using 'enum'
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseClassEnumType() {
StringView ElabSpef;
if (consumeIf("Ts"))
ElabSpef = "struct";
else if (consumeIf("Tu"))
ElabSpef = "union";
else if (consumeIf("Te"))
ElabSpef = "enum";
Node *Name = getDerived().parseName();
if (Name == nullptr)
return nullptr;
if (!ElabSpef.empty())
return make<ElaboratedTypeSpefType>(ElabSpef, Name);
return Name;
}
// <qualified-type> ::= <qualifiers> <type>
// <qualifiers> ::= <extended-qualifier>* <CV-qualifiers>
// <extended-qualifier> ::= U <source-name> [<template-args>] # vendor extended type qualifier
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseQualifiedType() {
if (consumeIf('U')) {
StringView Qual = parseBareSourceName();
if (Qual.empty())
return nullptr;
// extension ::= U <objc-name> <objc-type> # objc-type<identifier>
if (Qual.startsWith("objcproto")) {
StringView ProtoSourceName = Qual.dropFront(std::strlen("objcproto"));
StringView Proto;
{
ScopedOverride<const char *> SaveFirst(First, ProtoSourceName.begin()),
SaveLast(Last, ProtoSourceName.end());
Proto = parseBareSourceName();
}
if (Proto.empty())
return nullptr;
Node *Child = getDerived().parseQualifiedType();
if (Child == nullptr)
return nullptr;
return make<ObjCProtoName>(Child, Proto);
}
Node *TA = nullptr;
if (look() == 'I') {
TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
}
Node *Child = getDerived().parseQualifiedType();
if (Child == nullptr)
return nullptr;
return make<VendorExtQualType>(Child, Qual, TA);
}
Qualifiers Quals = parseCVQualifiers();
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
if (Quals != QualNone)
Ty = make<QualType>(Ty, Quals);
return Ty;
}
// <type> ::= <builtin-type>
// ::= <qualified-type>
// ::= <function-type>
// ::= <class-enum-type>
// ::= <array-type>
// ::= <pointer-to-member-type>
// ::= <template-param>
// ::= <template-template-param> <template-args>
// ::= <decltype>
// ::= P <type> # pointer
// ::= R <type> # l-value reference
// ::= O <type> # r-value reference (C++11)
// ::= C <type> # complex pair (C99)
// ::= G <type> # imaginary (C99)
// ::= <substitution> # See Compression below
// extension ::= U <objc-name> <objc-type> # objc-type<identifier>
// extension ::= <vector-type> # <vector-type> starts with Dv
//
// <objc-name> ::= <k0 number> objcproto <k1 number> <identifier> # k0 = 9 + <number of digits in k1> + k1
// <objc-type> ::= <source-name> # PU<11+>objcproto 11objc_object<source-name> 11objc_object -> id<source-name>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseType() {
Node *Result = nullptr;
switch (look()) {
// ::= <qualified-type>
case 'r':
case 'V':
case 'K': {
unsigned AfterQuals = 0;
if (look(AfterQuals) == 'r') ++AfterQuals;
if (look(AfterQuals) == 'V') ++AfterQuals;
if (look(AfterQuals) == 'K') ++AfterQuals;
if (look(AfterQuals) == 'F' ||
(look(AfterQuals) == 'D' &&
(look(AfterQuals + 1) == 'o' || look(AfterQuals + 1) == 'O' ||
look(AfterQuals + 1) == 'w' || look(AfterQuals + 1) == 'x'))) {
Result = getDerived().parseFunctionType();
break;
}
DEMANGLE_FALLTHROUGH;
}
case 'U': {
Result = getDerived().parseQualifiedType();
break;
}
// <builtin-type> ::= v # void
case 'v':
++First;
return make<NameType>("void");
// ::= w # wchar_t
case 'w':
++First;
return make<NameType>("wchar_t");
// ::= b # bool
case 'b':
++First;
return make<NameType>("bool");
// ::= c # char
case 'c':
++First;
return make<NameType>("char");
// ::= a # signed char
case 'a':
++First;
return make<NameType>("signed char");
// ::= h # unsigned char
case 'h':
++First;
return make<NameType>("unsigned char");
// ::= s # short
case 's':
++First;
return make<NameType>("short");
// ::= t # unsigned short
case 't':
++First;
return make<NameType>("unsigned short");
// ::= i # int
case 'i':
++First;
return make<NameType>("int");
// ::= j # unsigned int
case 'j':
++First;
return make<NameType>("unsigned int");
// ::= l # long
case 'l':
++First;
return make<NameType>("long");
// ::= m # unsigned long
case 'm':
++First;
return make<NameType>("unsigned long");
// ::= x # long long, __int64
case 'x':
++First;
return make<NameType>("long long");
// ::= y # unsigned long long, __int64
case 'y':
++First;
return make<NameType>("unsigned long long");
// ::= n # __int128
case 'n':
++First;
return make<NameType>("__int128");
// ::= o # unsigned __int128
case 'o':
++First;
return make<NameType>("unsigned __int128");
// ::= f # float
case 'f':
++First;
return make<NameType>("float");
// ::= d # double
case 'd':
++First;
return make<NameType>("double");
// ::= e # long double, __float80
case 'e':
++First;
return make<NameType>("long double");
// ::= g # __float128
case 'g':
++First;
return make<NameType>("__float128");
// ::= z # ellipsis
case 'z':
++First;
return make<NameType>("...");
// <builtin-type> ::= u <source-name> # vendor extended type
case 'u': {
++First;
StringView Res = parseBareSourceName();
if (Res.empty())
return nullptr;
// Typically, <builtin-type>s are not considered substitution candidates,
// but the exception to that exception is vendor extended types (Itanium C++
// ABI 5.9.1).
Result = make<NameType>(Res);
break;
}
case 'D':
switch (look(1)) {
// ::= Dd # IEEE 754r decimal floating point (64 bits)
case 'd':
First += 2;
return make<NameType>("decimal64");
// ::= De # IEEE 754r decimal floating point (128 bits)
case 'e':
First += 2;
return make<NameType>("decimal128");
// ::= Df # IEEE 754r decimal floating point (32 bits)
case 'f':
First += 2;
return make<NameType>("decimal32");
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
case 'h':
First += 2;
return make<NameType>("half");
// ::= DF <number> _ # ISO/IEC TS 18661 binary floating point (N bits)
case 'F': {
First += 2;
Node *DimensionNumber = make<NameType>(parseNumber());
if (!DimensionNumber)
return nullptr;
if (!consumeIf('_'))
return nullptr;
return make<BinaryFPType>(DimensionNumber);
}
// ::= DB <number> _ # C23 signed _BitInt(N)
// ::= DB <instantiation-dependent expression> _ # C23 signed _BitInt(N)
// ::= DU <number> _ # C23 unsigned _BitInt(N)
// ::= DU <instantiation-dependent expression> _ # C23 unsigned _BitInt(N)
case 'B':
case 'U': {
bool Signed = look(1) == 'B';
First += 2;
Node *Size = std::isdigit(look()) ? make<NameType>(parseNumber())
: getDerived().parseExpr();
if (!Size)
return nullptr;
if (!consumeIf('_'))
return nullptr;
return make<BitIntType>(Size, Signed);
}
// ::= Di # char32_t
case 'i':
First += 2;
return make<NameType>("char32_t");
// ::= Ds # char16_t
case 's':
First += 2;
return make<NameType>("char16_t");
// ::= Du # char8_t (C++2a, not yet in the Itanium spec)
case 'u':
First += 2;
return make<NameType>("char8_t");
// ::= Da # auto (in dependent new-expressions)
case 'a':
First += 2;
return make<NameType>("auto");
// ::= Dc # decltype(auto)
case 'c':
First += 2;
return make<NameType>("decltype(auto)");
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
case 'n':
First += 2;
return make<NameType>("std::nullptr_t");
// ::= <decltype>
case 't':
case 'T': {
Result = getDerived().parseDecltype();
break;
}
// extension ::= <vector-type> # <vector-type> starts with Dv
case 'v': {
Result = getDerived().parseVectorType();
break;
}
// ::= Dp <type> # pack expansion (C++0x)
case 'p': {
First += 2;
Node *Child = getDerived().parseType();
if (!Child)
return nullptr;
Result = make<ParameterPackExpansion>(Child);
break;
}
// Exception specifier on a function type.
case 'o':
case 'O':
case 'w':
// Transaction safe function type.
case 'x':
Result = getDerived().parseFunctionType();
break;
}
break;
// ::= <function-type>
case 'F': {
Result = getDerived().parseFunctionType();
break;
}
// ::= <array-type>
case 'A': {
Result = getDerived().parseArrayType();
break;
}
// ::= <pointer-to-member-type>
case 'M': {
Result = getDerived().parsePointerToMemberType();
break;
}
// ::= <template-param>
case 'T': {
// This could be an elaborate type specifier on a <class-enum-type>.
if (look(1) == 's' || look(1) == 'u' || look(1) == 'e') {
Result = getDerived().parseClassEnumType();
break;
}
Result = getDerived().parseTemplateParam();
if (Result == nullptr)
return nullptr;
// Result could be either of:
// <type> ::= <template-param>
// <type> ::= <template-template-param> <template-args>
//
// <template-template-param> ::= <template-param>
// ::= <substitution>
//
// If this is followed by some <template-args>, and we're permitted to
// parse them, take the second production.
if (TryToParseTemplateArgs && look() == 'I') {
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
Result = make<NameWithTemplateArgs>(Result, TA);
}
break;
}
// ::= P <type> # pointer
case 'P': {
++First;
Node *Ptr = getDerived().parseType();
if (Ptr == nullptr)
return nullptr;
Result = make<PointerType>(Ptr);
break;
}
// ::= R <type> # l-value reference
case 'R': {
++First;
Node *Ref = getDerived().parseType();
if (Ref == nullptr)
return nullptr;
Result = make<ReferenceType>(Ref, ReferenceKind::LValue);
break;
}
// ::= O <type> # r-value reference (C++11)
case 'O': {
++First;
Node *Ref = getDerived().parseType();
if (Ref == nullptr)
return nullptr;
Result = make<ReferenceType>(Ref, ReferenceKind::RValue);
break;
}
// ::= C <type> # complex pair (C99)
case 'C': {
++First;
Node *P = getDerived().parseType();
if (P == nullptr)
return nullptr;
Result = make<PostfixQualifiedType>(P, " complex");
break;
}
// ::= G <type> # imaginary (C99)
case 'G': {
++First;
Node *P = getDerived().parseType();
if (P == nullptr)
return P;
Result = make<PostfixQualifiedType>(P, " imaginary");
break;
}
// ::= <substitution> # See Compression below
case 'S': {
if (look(1) != 't') {
bool IsSubst = false;
Result = getDerived().parseUnscopedName(nullptr, &IsSubst);
if (!Result)
return nullptr;
// Sub could be either of:
// <type> ::= <substitution>
// <type> ::= <template-template-param> <template-args>
//
// <template-template-param> ::= <template-param>
// ::= <substitution>
//
// If this is followed by some <template-args>, and we're permitted to
// parse them, take the second production.
if (look() == 'I' && (!IsSubst || TryToParseTemplateArgs)) {
if (!IsSubst)
Subs.push_back(Result);
Node *TA = getDerived().parseTemplateArgs();
if (TA == nullptr)
return nullptr;
Result = make<NameWithTemplateArgs>(Result, TA);
} else if (IsSubst) {
// If all we parsed was a substitution, don't re-insert into the
// substitution table.
return Result;
}
break;
}
DEMANGLE_FALLTHROUGH;
}
// ::= <class-enum-type>
default: {
Result = getDerived().parseClassEnumType();
break;
}
}
// If we parsed a type, insert it into the substitution table. Note that all
// <builtin-type>s and <substitution>s have already bailed out, because they
// don't get substitutions.
if (Result != nullptr)
Subs.push_back(Result);
return Result;
}
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parsePrefixExpr(StringView Kind,
Node::Prec Prec) {
Node *E = getDerived().parseExpr();
if (E == nullptr)
return nullptr;
return make<PrefixExpr>(Kind, E, Prec);
}
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseBinaryExpr(StringView Kind,
Node::Prec Prec) {
Node *LHS = getDerived().parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = getDerived().parseExpr();
if (RHS == nullptr)
return nullptr;
return make<BinaryExpr>(LHS, Kind, RHS, Prec);
}
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseIntegerLiteral(StringView Lit) {
StringView Tmp = parseNumber(true);
if (!Tmp.empty() && consumeIf('E'))
return make<IntegerLiteral>(Lit, Tmp);
return nullptr;
}
// <CV-Qualifiers> ::= [r] [V] [K]
template <typename Alloc, typename Derived>
Qualifiers AbstractManglingParser<Alloc, Derived>::parseCVQualifiers() {
Qualifiers CVR = QualNone;
if (consumeIf('r'))
CVR |= QualRestrict;
if (consumeIf('V'))
CVR |= QualVolatile;
if (consumeIf('K'))
CVR |= QualConst;
return CVR;
}
// <function-param> ::= fp <top-level CV-Qualifiers> _ # L == 0, first parameter
// ::= fp <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L == 0, second and later parameters
// ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> _ # L > 0, first parameter
// ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L > 0, second and later parameters
// ::= fpT # 'this' expression (not part of standard?)
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseFunctionParam() {
if (consumeIf("fpT"))
return make<NameType>("this");
if (consumeIf("fp")) {
parseCVQualifiers();
StringView Num = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<FunctionParam>(Num);
}
if (consumeIf("fL")) {
if (parseNumber().empty())
return nullptr;
if (!consumeIf('p'))
return nullptr;
parseCVQualifiers();
StringView Num = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<FunctionParam>(Num);
}
return nullptr;
}
// cv <type> <expression> # conversion with one argument
// cv <type> _ <expression>* E # conversion with a different number of arguments
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseConversionExpr() {
if (!consumeIf("cv"))
return nullptr;
Node *Ty;
{
ScopedOverride<bool> SaveTemp(TryToParseTemplateArgs, false);
Ty = getDerived().parseType();
}
if (Ty == nullptr)
return nullptr;
if (consumeIf('_')) {
size_t ExprsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = getDerived().parseExpr();
if (E == nullptr)
return E;
Names.push_back(E);
}
NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
return make<ConversionExpr>(Ty, Exprs);
}
Node *E[1] = {getDerived().parseExpr()};
if (E[0] == nullptr)
return nullptr;
return make<ConversionExpr>(Ty, makeNodeArray(E, E + 1));
}
// <expr-primary> ::= L <type> <value number> E # integer literal
// ::= L <type> <value float> E # floating literal
// ::= L <string type> E # string literal
// ::= L <nullptr type> E # nullptr literal (i.e., "LDnE")
// ::= L <lambda type> E # lambda expression
// FIXME: ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C 2000)
// ::= L <mangled-name> E # external name
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseExprPrimary() {
if (!consumeIf('L'))
return nullptr;
switch (look()) {
case 'w':
++First;
return getDerived().parseIntegerLiteral("wchar_t");
case 'b':
if (consumeIf("b0E"))
return make<BoolExpr>(0);
if (consumeIf("b1E"))
return make<BoolExpr>(1);
return nullptr;
case 'c':
++First;
return getDerived().parseIntegerLiteral("char");
case 'a':
++First;
return getDerived().parseIntegerLiteral("signed char");
case 'h':
++First;
return getDerived().parseIntegerLiteral("unsigned char");
case 's':
++First;
return getDerived().parseIntegerLiteral("short");
case 't':
++First;
return getDerived().parseIntegerLiteral("unsigned short");
case 'i':
++First;
return getDerived().parseIntegerLiteral("");
case 'j':
++First;
return getDerived().parseIntegerLiteral("u");
case 'l':
++First;
return getDerived().parseIntegerLiteral("l");
case 'm':
++First;
return getDerived().parseIntegerLiteral("ul");
case 'x':
++First;
return getDerived().parseIntegerLiteral("ll");
case 'y':
++First;
return getDerived().parseIntegerLiteral("ull");
case 'n':
++First;
return getDerived().parseIntegerLiteral("__int128");
case 'o':
++First;
return getDerived().parseIntegerLiteral("unsigned __int128");
case 'f':
++First;
return getDerived().template parseFloatingLiteral<float>();
case 'd':
++First;
return getDerived().template parseFloatingLiteral<double>();
case 'e':
++First;
#if defined(__powerpc__) || defined(__s390__)
// Handle cases where long doubles encoded with e have the same size
// and representation as doubles.
return getDerived().template parseFloatingLiteral<double>();
#else
return getDerived().template parseFloatingLiteral<long double>();
#endif
case '_':
if (consumeIf("_Z")) {
Node *R = getDerived().parseEncoding();
if (R != nullptr && consumeIf('E'))
return R;
}
return nullptr;
case 'A': {
Node *T = getDerived().parseType();
if (T == nullptr)
return nullptr;
// FIXME: We need to include the string contents in the mangling.
if (consumeIf('E'))
return make<StringLiteral>(T);
return nullptr;
}
case 'D':
if (consumeIf("Dn") && (consumeIf('0'), consumeIf('E')))
return make<NameType>("nullptr");
return nullptr;
case 'T':
// Invalid mangled name per
// http://sourcerytools.com/pipermail/cxx-abi-dev/2011-August/002422.html
return nullptr;
case 'U': {
// FIXME: Should we support LUb... for block literals?
if (look(1) != 'l')
return nullptr;
Node *T = parseUnnamedTypeName(nullptr);
if (!T || !consumeIf('E'))
return nullptr;
return make<LambdaExpr>(T);
}
default: {
// might be named type
Node *T = getDerived().parseType();
if (T == nullptr)
return nullptr;
StringView N = parseNumber(/*AllowNegative=*/true);
if (N.empty())
return nullptr;
if (!consumeIf('E'))
return nullptr;
return make<EnumLiteral>(T, N);
}
}
}
// <braced-expression> ::= <expression>
// ::= di <field source-name> <braced-expression> # .name = expr
// ::= dx <index expression> <braced-expression> # [expr] = expr
// ::= dX <range begin expression> <range end expression> <braced-expression>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseBracedExpr() {
if (look() == 'd') {
switch (look(1)) {
case 'i': {
First += 2;
Node *Field = getDerived().parseSourceName(/*NameState=*/nullptr);
if (Field == nullptr)
return nullptr;
Node *Init = getDerived().parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedExpr>(Field, Init, /*isArray=*/false);
}
case 'x': {
First += 2;
Node *Index = getDerived().parseExpr();
if (Index == nullptr)
return nullptr;
Node *Init = getDerived().parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedExpr>(Index, Init, /*isArray=*/true);
}
case 'X': {
First += 2;
Node *RangeBegin = getDerived().parseExpr();
if (RangeBegin == nullptr)
return nullptr;
Node *RangeEnd = getDerived().parseExpr();
if (RangeEnd == nullptr)
return nullptr;
Node *Init = getDerived().parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedRangeExpr>(RangeBegin, RangeEnd, Init);
}
}
}
return getDerived().parseExpr();
}
// (not yet in the spec)
// <fold-expr> ::= fL <binary-operator-name> <expression> <expression>
// ::= fR <binary-operator-name> <expression> <expression>
// ::= fl <binary-operator-name> <expression>
// ::= fr <binary-operator-name> <expression>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseFoldExpr() {
if (!consumeIf('f'))
return nullptr;
bool IsLeftFold = false, HasInitializer = false;
switch (look()) {
default:
return nullptr;
case 'L':
IsLeftFold = true;
HasInitializer = true;
break;
case 'R':
HasInitializer = true;
break;
case 'l':
IsLeftFold = true;
break;
case 'r':
break;
}
++First;
const auto *Op = parseOperatorEncoding();
if (!Op)
return nullptr;
if (!(Op->getKind() == OperatorInfo::Binary
|| (Op->getKind() == OperatorInfo::Member
&& Op->getName().back() == '*')))
return nullptr;
Node *Pack = getDerived().parseExpr();
if (Pack == nullptr)
return nullptr;
Node *Init = nullptr;
if (HasInitializer) {
Init = getDerived().parseExpr();
if (Init == nullptr)
return nullptr;
}
if (IsLeftFold && Init)
std::swap(Pack, Init);
return make<FoldExpr>(IsLeftFold, Op->getSymbol(), Pack, Init);
}
// <expression> ::= mc <parameter type> <expr> [<offset number>] E
//
// Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/47
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parsePointerToMemberConversionExpr(
Node::Prec Prec) {
Node *Ty = getDerived().parseType();
if (!Ty)
return nullptr;
Node *Expr = getDerived().parseExpr();
if (!Expr)
return nullptr;
StringView Offset = getDerived().parseNumber(true);
if (!consumeIf('E'))
return nullptr;
return make<PointerToMemberConversionExpr>(Ty, Expr, Offset, Prec);
}
// <expression> ::= so <referent type> <expr> [<offset number>] <union-selector>* [p] E
// <union-selector> ::= _ [<number>]
//
// Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/47
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseSubobjectExpr() {
Node *Ty = getDerived().parseType();
if (!Ty)
return nullptr;
Node *Expr = getDerived().parseExpr();
if (!Expr)
return nullptr;
StringView Offset = getDerived().parseNumber(true);
size_t SelectorsBegin = Names.size();
while (consumeIf('_')) {
Node *Selector = make<NameType>(parseNumber());
if (!Selector)
return nullptr;
Names.push_back(Selector);
}
bool OnePastTheEnd = consumeIf('p');
if (!consumeIf('E'))
return nullptr;
return make<SubobjectExpr>(
Ty, Expr, Offset, popTrailingNodeArray(SelectorsBegin), OnePastTheEnd);
}
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <ternary operator-name> <expression> <expression> <expression>
// ::= cl <expression>+ E # call
// ::= cv <type> <expression> # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= [gs] nw <expression>* _ <type> E # new (expr-list) type
// ::= [gs] nw <expression>* _ <type> <initializer> # new (expr-list) type (init)
// ::= [gs] na <expression>* _ <type> E # new[] (expr-list) type
// ::= [gs] na <expression>* _ <type> <initializer> # new[] (expr-list) type (init)
// ::= [gs] dl <expression> # delete expression
// ::= [gs] da <expression> # delete[] expression
// ::= pp_ <expression> # prefix ++
// ::= mm_ <expression> # prefix --
// ::= ti <type> # typeid (type)
// ::= te <expression> # typeid (expression)
// ::= dc <type> <expression> # dynamic_cast<type> (expression)
// ::= sc <type> <expression> # static_cast<type> (expression)
// ::= cc <type> <expression> # const_cast<type> (expression)
// ::= rc <type> <expression> # reinterpret_cast<type> (expression)
// ::= st <type> # sizeof (a type)
// ::= sz <expression> # sizeof (an expression)
// ::= at <type> # alignof (a type)
// ::= az <expression> # alignof (an expression)
// ::= nx <expression> # noexcept (expression)
// ::= <template-param>
// ::= <function-param>
// ::= dt <expression> <unresolved-name> # expr.name
// ::= pt <expression> <unresolved-name> # expr->name
// ::= ds <expression> <expression> # expr.*expr
// ::= sZ <template-param> # size of a parameter pack
// ::= sZ <function-param> # size of a function parameter pack
// ::= sP <template-arg>* E # sizeof...(T), size of a captured template parameter pack from an alias template
// ::= sp <expression> # pack expansion
// ::= tw <expression> # throw expression
// ::= tr # throw with no operand (rethrow)
// ::= <unresolved-name> # f(p), N::f(p), ::f(p),
// # freestanding dependent name (e.g., T::x),
// # objectless nonstatic member reference
// ::= fL <binary-operator-name> <expression> <expression>
// ::= fR <binary-operator-name> <expression> <expression>
// ::= fl <binary-operator-name> <expression>
// ::= fr <binary-operator-name> <expression>
// ::= <expr-primary>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseExpr() {
bool Global = consumeIf("gs");
const auto *Op = parseOperatorEncoding();
if (Op) {
auto Sym = Op->getSymbol();
switch (Op->getKind()) {
case OperatorInfo::Binary:
// Binary operator: lhs @ rhs
return getDerived().parseBinaryExpr(Sym, Op->getPrecedence());
case OperatorInfo::Prefix:
// Prefix unary operator: @ expr
return getDerived().parsePrefixExpr(Sym, Op->getPrecedence());
case OperatorInfo::Postfix: {
// Postfix unary operator: expr @
if (consumeIf('_'))
return getDerived().parsePrefixExpr(Sym, Op->getPrecedence());
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return nullptr;
return make<PostfixExpr>(Ex, Sym, Op->getPrecedence());
}
case OperatorInfo::Array: {
// Array Index: lhs [ rhs ]
Node *Base = getDerived().parseExpr();
if (Base == nullptr)
return nullptr;
Node *Index = getDerived().parseExpr();
if (Index == nullptr)
return nullptr;
return make<ArraySubscriptExpr>(Base, Index, Op->getPrecedence());
}
case OperatorInfo::Member: {
// Member access lhs @ rhs
Node *LHS = getDerived().parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = getDerived().parseExpr();
if (RHS == nullptr)
return nullptr;
return make<MemberExpr>(LHS, Sym, RHS, Op->getPrecedence());
}
case OperatorInfo::New: {
// New
// # new (expr-list) type [(init)]
// [gs] nw <expression>* _ <type> [pi <expression>*] E
// # new[] (expr-list) type [(init)]
// [gs] na <expression>* _ <type> [pi <expression>*] E
size_t Exprs = Names.size();
while (!consumeIf('_')) {
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return nullptr;
Names.push_back(Ex);
}
NodeArray ExprList = popTrailingNodeArray(Exprs);
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
bool HaveInits = consumeIf("pi");
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
if (!HaveInits)
return nullptr;
Node *Init = getDerived().parseExpr();
if (Init == nullptr)
return Init;
Names.push_back(Init);
}
NodeArray Inits = popTrailingNodeArray(InitsBegin);
return make<NewExpr>(ExprList, Ty, Inits, Global,
/*IsArray=*/Op->getFlag(), Op->getPrecedence());
}
case OperatorInfo::Del: {
// Delete
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return nullptr;
return make<DeleteExpr>(Ex, Global, /*IsArray=*/Op->getFlag(),
Op->getPrecedence());
}
case OperatorInfo::Call: {
// Function Call
Node *Callee = getDerived().parseExpr();
if (Callee == nullptr)
return nullptr;
size_t ExprsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = getDerived().parseExpr();
if (E == nullptr)
return nullptr;
Names.push_back(E);
}
return make<CallExpr>(Callee, popTrailingNodeArray(ExprsBegin),
Op->getPrecedence());
}
case OperatorInfo::CCast: {
// C Cast: (type)expr
Node *Ty;
{
ScopedOverride<bool> SaveTemp(TryToParseTemplateArgs, false);
Ty = getDerived().parseType();
}
if (Ty == nullptr)
return nullptr;
size_t ExprsBegin = Names.size();
bool IsMany = consumeIf('_');
while (!consumeIf('E')) {
Node *E = getDerived().parseExpr();
if (E == nullptr)
return E;
Names.push_back(E);
if (!IsMany)
break;
}
NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
if (!IsMany && Exprs.size() != 1)
return nullptr;
return make<ConversionExpr>(Ty, Exprs, Op->getPrecedence());
}
case OperatorInfo::Conditional: {
// Conditional operator: expr ? expr : expr
Node *Cond = getDerived().parseExpr();
if (Cond == nullptr)
return nullptr;
Node *LHS = getDerived().parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = getDerived().parseExpr();
if (RHS == nullptr)
return nullptr;
return make<ConditionalExpr>(Cond, LHS, RHS, Op->getPrecedence());
}
case OperatorInfo::NamedCast: {
// Named cast operation, @<type>(expr)
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return nullptr;
return make<CastExpr>(Sym, Ty, Ex, Op->getPrecedence());
}
case OperatorInfo::OfIdOp: {
// [sizeof/alignof/typeid] ( <type>|<expr> )
Node *Arg =
Op->getFlag() ? getDerived().parseType() : getDerived().parseExpr();
if (!Arg)
return nullptr;
return make<EnclosingExpr>(Sym, Arg, Op->getPrecedence());
}
case OperatorInfo::NameOnly: {
// Not valid as an expression operand.
return nullptr;
}
}
DEMANGLE_UNREACHABLE;
}
if (numLeft() < 2)
return nullptr;
if (look() == 'L')
return getDerived().parseExprPrimary();
if (look() == 'T')
return getDerived().parseTemplateParam();
if (look() == 'f') {
// Disambiguate a fold expression from a <function-param>.
if (look(1) == 'p' || (look(1) == 'L' && std::isdigit(look(2))))
return getDerived().parseFunctionParam();
return getDerived().parseFoldExpr();
}
if (consumeIf("il")) {
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = getDerived().parseBracedExpr();
if (E == nullptr)
return nullptr;
Names.push_back(E);
}
return make<InitListExpr>(nullptr, popTrailingNodeArray(InitsBegin));
}
if (consumeIf("mc"))
return parsePointerToMemberConversionExpr(Node::Prec::Unary);
if (consumeIf("nx")) {
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return Ex;
return make<EnclosingExpr>("noexcept ", Ex, Node::Prec::Unary);
}
if (consumeIf("so"))
return parseSubobjectExpr();
if (consumeIf("sp")) {
Node *Child = getDerived().parseExpr();
if (Child == nullptr)
return nullptr;
return make<ParameterPackExpansion>(Child);
}
if (consumeIf("sZ")) {
if (look() == 'T') {
Node *R = getDerived().parseTemplateParam();
if (R == nullptr)
return nullptr;
return make<SizeofParamPackExpr>(R);
}
Node *FP = getDerived().parseFunctionParam();
if (FP == nullptr)
return nullptr;
return make<EnclosingExpr>("sizeof... ", FP);
}
if (consumeIf("sP")) {
size_t ArgsBegin = Names.size();
while (!consumeIf('E')) {
Node *Arg = getDerived().parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
auto *Pack = make<NodeArrayNode>(popTrailingNodeArray(ArgsBegin));
if (!Pack)
return nullptr;
return make<EnclosingExpr>("sizeof... ", Pack);
}
if (consumeIf("tl")) {
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = getDerived().parseBracedExpr();
if (E == nullptr)
return nullptr;
Names.push_back(E);
}
return make<InitListExpr>(Ty, popTrailingNodeArray(InitsBegin));
}
if (consumeIf("tr"))
return make<NameType>("throw");
if (consumeIf("tw")) {
Node *Ex = getDerived().parseExpr();
if (Ex == nullptr)
return nullptr;
return make<ThrowExpr>(Ex);
}
if (consumeIf('u')) {
Node *Name = getDerived().parseSourceName(/*NameState=*/nullptr);
if (!Name)
return nullptr;
// Special case legacy __uuidof mangling. The 't' and 'z' appear where the
// standard encoding expects a <template-arg>, and would be otherwise be
// interpreted as <type> node 'short' or 'ellipsis'. However, neither
// __uuidof(short) nor __uuidof(...) can actually appear, so there is no
// actual conflict here.
bool IsUUID = false;
Node *UUID = nullptr;
if (Name->getBaseName() == "__uuidof") {
if (consumeIf('t')) {
UUID = getDerived().parseType();
IsUUID = true;
} else if (consumeIf('z')) {
UUID = getDerived().parseExpr();
IsUUID = true;
}
}
size_t ExprsBegin = Names.size();
if (IsUUID) {
if (UUID == nullptr)
return nullptr;
Names.push_back(UUID);
} else {
while (!consumeIf('E')) {
Node *E = getDerived().parseTemplateArg();
if (E == nullptr)
return E;
Names.push_back(E);
}
}
return make<CallExpr>(Name, popTrailingNodeArray(ExprsBegin),
Node::Prec::Postfix);
}
// Only unresolved names remain.
return getDerived().parseUnresolvedName(Global);
}
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
//
// <nv-offset> ::= <offset number>
// # non-virtual base override
//
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
template <typename Alloc, typename Derived>
bool AbstractManglingParser<Alloc, Derived>::parseCallOffset() {
// Just scan through the call offset, we never add this information into the
// output.
if (consumeIf('h'))
return parseNumber(true).empty() || !consumeIf('_');
if (consumeIf('v'))
return parseNumber(true).empty() || !consumeIf('_') ||
parseNumber(true).empty() || !consumeIf('_');
return true;
}
// <special-name> ::= TV <type> # virtual table
// ::= TT <type> # VTT structure (construction vtable index)
// ::= TI <type> # typeinfo structure
// ::= TS <type> # typeinfo name (null-terminated byte string)
// ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
// ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # Guard variable for one-time initialization
// ::= GV <object name>
// # No <type>
// ::= TW <object name> # Thread-local wrapper
// ::= TH <object name> # Thread-local initialization
// ::= GR <object name> _ # First temporary
// ::= GR <object name> <seq-id> _ # Subsequent temporaries
// # construction vtable for second-in-first
// extension ::= TC <first type> <number> _ <second type>
// extension ::= GR <object name> # reference temporary for object
// extension ::= GI <module name> # module global initializer
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseSpecialName() {
switch (look()) {
case 'T':
switch (look(1)) {
// TA <template-arg> # template parameter object
//
// Not yet in the spec: https://github.com/itanium-cxx-abi/cxx-abi/issues/63
case 'A': {
First += 2;
Node *Arg = getDerived().parseTemplateArg();
if (Arg == nullptr)
return nullptr;
return make<SpecialName>("template parameter object for ", Arg);
}
// TV <type> # virtual table
case 'V': {
First += 2;
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("vtable for ", Ty);
}
// TT <type> # VTT structure (construction vtable index)
case 'T': {
First += 2;
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("VTT for ", Ty);
}
// TI <type> # typeinfo structure
case 'I': {
First += 2;
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("typeinfo for ", Ty);
}
// TS <type> # typeinfo name (null-terminated byte string)
case 'S': {
First += 2;
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("typeinfo name for ", Ty);
}
// Tc <call-offset> <call-offset> <base encoding>
case 'c': {
First += 2;
if (parseCallOffset() || parseCallOffset())
return nullptr;
Node *Encoding = getDerived().parseEncoding();
if (Encoding == nullptr)
return nullptr;
return make<SpecialName>("covariant return thunk to ", Encoding);
}
// extension ::= TC <first type> <number> _ <second type>
// # construction vtable for second-in-first
case 'C': {
First += 2;
Node *FirstType = getDerived().parseType();
if (FirstType == nullptr)
return nullptr;
if (parseNumber(true).empty() || !consumeIf('_'))
return nullptr;
Node *SecondType = getDerived().parseType();
if (SecondType == nullptr)
return nullptr;
return make<CtorVtableSpecialName>(SecondType, FirstType);
}
// TW <object name> # Thread-local wrapper
case 'W': {
First += 2;
Node *Name = getDerived().parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("thread-local wrapper routine for ", Name);
}
// TH <object name> # Thread-local initialization
case 'H': {
First += 2;
Node *Name = getDerived().parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("thread-local initialization routine for ", Name);
}
// T <call-offset> <base encoding>
default: {
++First;
bool IsVirt = look() == 'v';
if (parseCallOffset())
return nullptr;
Node *BaseEncoding = getDerived().parseEncoding();
if (BaseEncoding == nullptr)
return nullptr;
if (IsVirt)
return make<SpecialName>("virtual thunk to ", BaseEncoding);
else
return make<SpecialName>("non-virtual thunk to ", BaseEncoding);
}
}
case 'G':
switch (look(1)) {
// GV <object name> # Guard variable for one-time initialization
case 'V': {
First += 2;
Node *Name = getDerived().parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("guard variable for ", Name);
}
// GR <object name> # reference temporary for object
// GR <object name> _ # First temporary
// GR <object name> <seq-id> _ # Subsequent temporaries
case 'R': {
First += 2;
Node *Name = getDerived().parseName();
if (Name == nullptr)
return nullptr;
size_t Count;
bool ParsedSeqId = !parseSeqId(&Count);
if (!consumeIf('_') && ParsedSeqId)
return nullptr;
return make<SpecialName>("reference temporary for ", Name);
}
// GI <module-name> v
case 'I': {
First += 2;
ModuleName *Module = nullptr;
if (getDerived().parseModuleNameOpt(Module))
return nullptr;
if (Module == nullptr)
return nullptr;
return make<SpecialName>("initializer for module ", Module);
}
}
}
return nullptr;
}
// <encoding> ::= <function name> <bare-function-type>
// ::= <data name>
// ::= <special-name>
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseEncoding() {
// The template parameters of an encoding are unrelated to those of the
// enclosing context.
class SaveTemplateParams {
AbstractManglingParser *Parser;
decltype(TemplateParams) OldParams;
decltype(OuterTemplateParams) OldOuterParams;
public:
SaveTemplateParams(AbstractManglingParser *TheParser) : Parser(TheParser) {
OldParams = std::move(Parser->TemplateParams);
OldOuterParams = std::move(Parser->OuterTemplateParams);
Parser->TemplateParams.clear();
Parser->OuterTemplateParams.clear();
}
~SaveTemplateParams() {
Parser->TemplateParams = std::move(OldParams);
Parser->OuterTemplateParams = std::move(OldOuterParams);
}
} SaveTemplateParams(this);
if (look() == 'G' || look() == 'T')
return getDerived().parseSpecialName();
auto IsEndOfEncoding = [&] {
// The set of chars that can potentially follow an <encoding> (none of which
// can start a <type>). Enumerating these allows us to avoid speculative
// parsing.
return numLeft() == 0 || look() == 'E' || look() == '.' || look() == '_';
};
NameState NameInfo(this);
Node *Name = getDerived().parseName(&NameInfo);
if (Name == nullptr)
return nullptr;
if (resolveForwardTemplateRefs(NameInfo))
return nullptr;
if (IsEndOfEncoding())
return Name;
Node *Attrs = nullptr;
if (consumeIf("Ua9enable_ifI")) {
size_t BeforeArgs = Names.size();
while (!consumeIf('E')) {
Node *Arg = getDerived().parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
Attrs = make<EnableIfAttr>(popTrailingNodeArray(BeforeArgs));
if (!Attrs)
return nullptr;
}
Node *ReturnType = nullptr;
if (!NameInfo.CtorDtorConversion && NameInfo.EndsWithTemplateArgs) {
ReturnType = getDerived().parseType();
if (ReturnType == nullptr)
return nullptr;
}
if (consumeIf('v'))
return make<FunctionEncoding>(ReturnType, Name, NodeArray(),
Attrs, NameInfo.CVQualifiers,
NameInfo.ReferenceQualifier);
size_t ParamsBegin = Names.size();
do {
Node *Ty = getDerived().parseType();
if (Ty == nullptr)
return nullptr;
Names.push_back(Ty);
} while (!IsEndOfEncoding());
return make<FunctionEncoding>(ReturnType, Name,
popTrailingNodeArray(ParamsBegin),
Attrs, NameInfo.CVQualifiers,
NameInfo.ReferenceQualifier);
}
template <class Float>
struct FloatData;
template <>
struct FloatData<float>
{
static const size_t mangled_size = 8;
static const size_t max_demangled_size = 24;
static constexpr const char* spec = "%af";
};
template <>
struct FloatData<double>
{
static const size_t mangled_size = 16;
static const size_t max_demangled_size = 32;
static constexpr const char* spec = "%a";
};
template <>
struct FloatData<long double>
{
#if defined(__mips__) && defined(__mips_n64) || defined(__aarch64__) || \
defined(__wasm__) || defined(__riscv)
static const size_t mangled_size = 32;
#elif defined(__arm__) || defined(__mips__) || defined(__hexagon__)
static const size_t mangled_size = 16;
#else
static const size_t mangled_size = 20; // May need to be adjusted to 16 or 24 on other platforms
#endif
// `-0x1.ffffffffffffffffffffffffffffp+16383` + 'L' + '\0' == 42 bytes.
// 28 'f's * 4 bits == 112 bits, which is the number of mantissa bits.
// Negatives are one character longer than positives.
// `0x1.` and `p` are constant, and exponents `+16383` and `-16382` are the
// same length. 1 sign bit, 112 mantissa bits, and 15 exponent bits == 128.
static const size_t max_demangled_size = 42;
static constexpr const char *spec = "%LaL";
};
template <typename Alloc, typename Derived>
template <class Float>
Node *AbstractManglingParser<Alloc, Derived>::parseFloatingLiteral() {
const size_t N = FloatData<Float>::mangled_size;
if (numLeft() <= N)
return nullptr;
StringView Data(First, First + N);
for (char C : Data)
if (!std::isxdigit(C))
return nullptr;
First += N;
if (!consumeIf('E'))
return nullptr;
return make<FloatLiteralImpl<Float>>(Data);
}
// <seq-id> ::= <0-9A-Z>+
template <typename Alloc, typename Derived>
bool AbstractManglingParser<Alloc, Derived>::parseSeqId(size_t *Out) {
if (!(look() >= '0' && look() <= '9') &&
!(look() >= 'A' && look() <= 'Z'))
return true;
size_t Id = 0;
while (true) {
if (look() >= '0' && look() <= '9') {
Id *= 36;
Id += static_cast<size_t>(look() - '0');
} else if (look() >= 'A' && look() <= 'Z') {
Id *= 36;
Id += static_cast<size_t>(look() - 'A') + 10;
} else {
*Out = Id;
return false;
}
++First;
}
}
// <substitution> ::= S <seq-id> _
// ::= S_
// <substitution> ::= Sa # ::std::allocator
// <substitution> ::= Sb # ::std::basic_string
// <substitution> ::= Ss # ::std::basic_string < char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
// <substitution> ::= Si # ::std::basic_istream<char, std::char_traits<char> >
// <substitution> ::= So # ::std::basic_ostream<char, std::char_traits<char> >
// <substitution> ::= Sd # ::std::basic_iostream<char, std::char_traits<char> >
// The St case is handled specially in parseNestedName.
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseSubstitution() {
if (!consumeIf('S'))
return nullptr;
if (look() >= 'a' && look() <= 'z') {
SpecialSubKind Kind;
switch (look()) {
case 'a':
Kind = SpecialSubKind::allocator;
break;
case 'b':
Kind = SpecialSubKind::basic_string;
break;
case 'd':
Kind = SpecialSubKind::iostream;
break;
case 'i':
Kind = SpecialSubKind::istream;
break;
case 'o':
Kind = SpecialSubKind::ostream;
break;
case 's':
Kind = SpecialSubKind::string;
break;
default:
return nullptr;
}
++First;
auto *SpecialSub = make<SpecialSubstitution>(Kind);
if (!SpecialSub)
return nullptr;
// Itanium C++ ABI 5.1.2: If a name that would use a built-in <substitution>
// has ABI tags, the tags are appended to the substitution; the result is a
// substitutable component.
Node *WithTags = getDerived().parseAbiTags(SpecialSub);
if (WithTags != SpecialSub) {
Subs.push_back(WithTags);
SpecialSub = WithTags;
}
return SpecialSub;
}
// ::= S_
if (consumeIf('_')) {
if (Subs.empty())
return nullptr;
return Subs[0];
}
// ::= S <seq-id> _
size_t Index = 0;
if (parseSeqId(&Index))
return nullptr;
++Index;
if (!consumeIf('_') || Index >= Subs.size())
return nullptr;
return Subs[Index];
}
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
// ::= TL <level-1> __
// ::= TL <level-1> _ <parameter-2 non-negative number> _
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParam() {
if (!consumeIf('T'))
return nullptr;
size_t Level = 0;
if (consumeIf('L')) {
if (parsePositiveInteger(&Level))
return nullptr;
++Level;
if (!consumeIf('_'))
return nullptr;
}
size_t Index = 0;
if (!consumeIf('_')) {
if (parsePositiveInteger(&Index))
return nullptr;
++Index;
if (!consumeIf('_'))
return nullptr;
}
// If we're in a context where this <template-param> refers to a
// <template-arg> further ahead in the mangled name (currently just conversion
// operator types), then we should only look it up in the right context.
// This can only happen at the outermost level.
if (PermitForwardTemplateReferences && Level == 0) {
Node *ForwardRef = make<ForwardTemplateReference>(Index);
if (!ForwardRef)
return nullptr;
assert(ForwardRef->getKind() == Node::KForwardTemplateReference);
ForwardTemplateRefs.push_back(
static_cast<ForwardTemplateReference *>(ForwardRef));
return ForwardRef;
}
if (Level >= TemplateParams.size() || !TemplateParams[Level] ||
Index >= TemplateParams[Level]->size()) {
// Itanium ABI 5.1.8: In a generic lambda, uses of auto in the parameter
// list are mangled as the corresponding artificial template type parameter.
if (ParsingLambdaParamsAtLevel == Level && Level <= TemplateParams.size()) {
// This will be popped by the ScopedTemplateParamList in
// parseUnnamedTypeName.
if (Level == TemplateParams.size())
TemplateParams.push_back(nullptr);
return make<NameType>("auto");
}
return nullptr;
}
return (*TemplateParams[Level])[Index];
}
// <template-param-decl> ::= Ty # type parameter
// ::= Tn <type> # non-type parameter
// ::= Tt <template-param-decl>* E # template parameter
// ::= Tp <template-param-decl> # parameter pack
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateParamDecl() {
auto InventTemplateParamName = [&](TemplateParamKind Kind) {
unsigned Index = NumSyntheticTemplateParameters[(int)Kind]++;
Node *N = make<SyntheticTemplateParamName>(Kind, Index);
if (N) TemplateParams.back()->push_back(N);
return N;
};
if (consumeIf("Ty")) {
Node *Name = InventTemplateParamName(TemplateParamKind::Type);
if (!Name)
return nullptr;
return make<TypeTemplateParamDecl>(Name);
}
if (consumeIf("Tn")) {
Node *Name = InventTemplateParamName(TemplateParamKind::NonType);
if (!Name)
return nullptr;
Node *Type = parseType();
if (!Type)
return nullptr;
return make<NonTypeTemplateParamDecl>(Name, Type);
}
if (consumeIf("Tt")) {
Node *Name = InventTemplateParamName(TemplateParamKind::Template);
if (!Name)
return nullptr;
size_t ParamsBegin = Names.size();
ScopedTemplateParamList TemplateTemplateParamParams(this);
while (!consumeIf("E")) {
Node *P = parseTemplateParamDecl();
if (!P)
return nullptr;
Names.push_back(P);
}
NodeArray Params = popTrailingNodeArray(ParamsBegin);
return make<TemplateTemplateParamDecl>(Name, Params);
}
if (consumeIf("Tp")) {
Node *P = parseTemplateParamDecl();
if (!P)
return nullptr;
return make<TemplateParamPackDecl>(P);
}
return nullptr;
}
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= J <template-arg>* E # argument pack
// ::= LZ <encoding> E # extension
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parseTemplateArg() {
switch (look()) {
case 'X': {
++First;
Node *Arg = getDerived().parseExpr();
if (Arg == nullptr || !consumeIf('E'))
return nullptr;
return Arg;
}
case 'J': {
++First;
size_t ArgsBegin = Names.size();
while (!consumeIf('E')) {
Node *Arg = getDerived().parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
NodeArray Args = popTrailingNodeArray(ArgsBegin);
return make<TemplateArgumentPack>(Args);
}
case 'L': {
// ::= LZ <encoding> E # extension
if (look(1) == 'Z') {
First += 2;
Node *Arg = getDerived().parseEncoding();
if (Arg == nullptr || !consumeIf('E'))
return nullptr;
return Arg;
}
// ::= <expr-primary> # simple expressions
return getDerived().parseExprPrimary();
}
default:
return getDerived().parseType();
}
}
// <template-args> ::= I <template-arg>* E
// extension, the abi says <template-arg>+
template <typename Derived, typename Alloc>
Node *
AbstractManglingParser<Derived, Alloc>::parseTemplateArgs(bool TagTemplates) {
if (!consumeIf('I'))
return nullptr;
// <template-params> refer to the innermost <template-args>. Clear out any
// outer args that we may have inserted into TemplateParams.
if (TagTemplates) {
TemplateParams.clear();
TemplateParams.push_back(&OuterTemplateParams);
OuterTemplateParams.clear();
}
size_t ArgsBegin = Names.size();
while (!consumeIf('E')) {
if (TagTemplates) {
auto OldParams = std::move(TemplateParams);
Node *Arg = getDerived().parseTemplateArg();
TemplateParams = std::move(OldParams);
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
Node *TableEntry = Arg;
if (Arg->getKind() == Node::KTemplateArgumentPack) {
TableEntry = make<ParameterPack>(
static_cast<TemplateArgumentPack*>(TableEntry)->getElements());
if (!TableEntry)
return nullptr;
}
TemplateParams.back()->push_back(TableEntry);
} else {
Node *Arg = getDerived().parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
}
return make<TemplateArgs>(popTrailingNodeArray(ArgsBegin));
}
// <mangled-name> ::= _Z <encoding>
// ::= <type>
// extension ::= ___Z <encoding> _block_invoke
// extension ::= ___Z <encoding> _block_invoke<decimal-digit>+
// extension ::= ___Z <encoding> _block_invoke_<decimal-digit>+
template <typename Derived, typename Alloc>
Node *AbstractManglingParser<Derived, Alloc>::parse() {
if (consumeIf("_Z") || consumeIf("__Z")) {
Node *Encoding = getDerived().parseEncoding();
if (Encoding == nullptr)
return nullptr;
if (look() == '.') {
Encoding = make<DotSuffix>(Encoding, StringView(First, Last));
First = Last;
}
if (numLeft() != 0)
return nullptr;
return Encoding;
}
if (consumeIf("___Z") || consumeIf("____Z")) {
Node *Encoding = getDerived().parseEncoding();
if (Encoding == nullptr || !consumeIf("_block_invoke"))
return nullptr;
bool RequireNumber = consumeIf('_');
if (parseNumber().empty() && RequireNumber)
return nullptr;
if (look() == '.')
First = Last;
if (numLeft() != 0)
return nullptr;
return make<SpecialName>("invocation function for block in ", Encoding);
}
Node *Ty = getDerived().parseType();
if (numLeft() != 0)
return nullptr;
return Ty;
}
template <typename Alloc>
struct ManglingParser : AbstractManglingParser<ManglingParser<Alloc>, Alloc> {
using AbstractManglingParser<ManglingParser<Alloc>,
Alloc>::AbstractManglingParser;
};
DEMANGLE_NAMESPACE_END
#endif // LLVM_DEMANGLE_ITANIUMDEMANGLE_H