1
0
mirror of synced 2025-01-07 20:21:37 +01:00
ImHex/lib/libimhex/include/hex/helpers/opengl.hpp

1103 lines
36 KiB
C++
Raw Normal View History

#pragma once
#include <hex.hpp>
#include <hex/helpers/concepts.hpp>
#include <cmath>
#include <vector>
#include <map>
#include <span>
#include <string>
#include <opengl_support.h>
#include <GLFW/glfw3.h>
#include "imgui.h"
namespace hex::gl {
2023-11-10 20:47:08 +01:00
namespace impl {
template<typename T>
GLuint getType() {
if constexpr (std::is_same_v<T, float>)
return GL_FLOAT;
else if constexpr (std::is_same_v<T, u8>)
return GL_UNSIGNED_BYTE;
else if constexpr (std::is_same_v<T, u16>)
return GL_UNSIGNED_SHORT;
else if constexpr (std::is_same_v<T, u32>)
return GL_UNSIGNED_INT;
2023-11-10 20:47:08 +01:00
else {
static_assert(hex::always_false<T>::value, "Unsupported type");
2023-11-10 20:47:08 +01:00
return 0;
}
}
}
template<typename T, size_t Size>
class Vector {
public:
Vector() = default;
Vector(const T val) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] = val;
}
Vector(std::array<T, Size> data) : m_data(data) { }
Vector(Vector &&other) noexcept : m_data(std::move(other.m_data)) { }
Vector(const Vector &other) : m_data(other.m_data) { }
T &operator[](size_t index) { return this->m_data[index]; }
const T &operator[](size_t index) const { return this->m_data[index]; }
std::array<T, Size> &asArray() { return this->m_data; }
T *data() { return this->m_data.data(); }
const T *data() const { return this->m_data.data(); }
[[nodiscard]] size_t size() const { return this->m_data.size(); }
auto operator=(const Vector& other) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] = other[i];
return *this;
}
auto operator+=(const Vector& other) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] += other.m_data[i];
return *this;
}
auto operator+=(const T scalar) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] += scalar;
return *this;
}
auto operator-=(Vector other) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] -= other.m_data[i];
return *this;
}
auto operator-=(const T scalar) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] -= scalar;
return *this;
}
Vector operator*=(const T scalar) {
for (size_t i = 0; i < Size; i++)
this->m_data[i] *= scalar;
return *this;
}
auto operator*(const T scalar) {
auto copy = *this;
for (size_t i = 0; i < Size; i++)
copy[i] *= scalar;
return copy;
}
2023-11-10 20:47:08 +01:00
auto operator+(const Vector& other) {
auto copy = *this;
for (size_t i = 0; i < Size; i++)
copy[i] += other[i];
return copy;
}
2023-11-10 20:47:08 +01:00
auto operator-(const Vector& other) {
auto copy = *this;
for (size_t i = 0; i < Size; i++)
copy[i] -= other[i];
return copy;
}
2023-11-10 20:47:08 +01:00
auto dot(const Vector& other) {
T result = 0;
for (size_t i = 0; i < Size; i++)
result += this->m_data[i] * other[i];
return result;
}
2023-11-10 20:47:08 +01:00
auto cross(const Vector& other) {
static_assert(Size == 3, "Cross product is only defined for 3D vectors");
return Vector({this->m_data[1] * other[2] - this->m_data[2] * other[1],
this->m_data[2] * other[0] - this->m_data[0] * other[2],
this->m_data[0] * other[1] - this->m_data[1] * other[0]});
}
auto magnitude() {
return std::sqrt(this->dot(*this));
}
auto normalize() {
auto copy = *this;
auto length = copy.magnitude();
for (size_t i = 0; i < Size; i++)
copy[i] /= length;
return copy;
}
2023-11-10 20:47:08 +01:00
auto operator==(const Vector& other) {
for (size_t i = 0; i < Size; i++)
if (this->m_data[i] != other[i])
return false;
return true;
}
private:
std::array<T, Size> m_data;
};
template<typename T, size_t Rows, size_t Columns>
class Matrix {
public:
Matrix(const T &init) {
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
mat[i * Columns + j] = init;
}
Matrix(const Matrix &A) {
mat = A.mat;
}
virtual ~Matrix() {}
size_t getRows() const {
return Rows;
}
size_t getColumns() const {
return Columns;
}
T *data() { return this->mat.data(); }
const T *data() const { return this->mat.data(); }
T &getElement(int row,int col) {
return this->mat[row*Columns+col];
}
Vector<T,Rows> getColumn(int col) {
Vector<T,Rows> result;
for (size_t i = 0; i < Rows; i++)
result[i] = this->mat[i*Columns+col];
return result;
}
Vector<T,Columns> getRow(int row) {
Vector<T,Columns> result;
for (size_t i = 0; i < Columns; i++)
result[i] = this->mat[row*Columns+i];
return result;
}
void updateRow(int row, Vector<T,Columns> values) {
for (size_t i = 0; i < Columns; i++)
this->mat[row*Columns+i] = values[i];
}
void updateColumn(int col, Vector<T,Rows> values) {
for (size_t i = 0; i < Rows; i++)
this->mat[i*Columns+col] = values[i];
}
void updateElement( int row,int col, T value) {
this->mat[row*Columns + col] = value;
}
T &operator()( const int &row,const int &col) {
return this->mat[row*Columns + col];
}
const T &operator()(const unsigned& row,const unsigned& col ) const {
return this->mat[row*Columns + col];
}
Matrix& operator=(const Matrix& A) {
if (&A == this)
return *this;
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
mat[i*Columns+j] = A(i, j);
return *this;
}
Matrix operator+(const Matrix& A) {
Matrix result(0.0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
result(i, j) = this->mat[i*Columns+j] + A(i, j);
return result;
}
Matrix operator-(const Matrix& A) {
Matrix result(0.0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
result(i, j) = this->mat[i*Columns+j] - A(i, j);
return result;
}
static Matrix identity() {
Matrix I(0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
if(i == j)
I.updateElement(i, j, 1);
return I;
}
Matrix transpose() {
Matrix t(0);
for (size_t i = 0; i < Columns; i++)
for (size_t j = 0; j < Rows; j++)
t.updateElement(i, j, this->mat[j*Rows+i]);
return t;
}
private:
std::array<T,Rows * Columns> mat;
};
template<typename T, size_t Rows, size_t Columns, size_t OtherDimension>
Matrix<T,Rows, Columns> operator*(const Matrix<T, Rows, OtherDimension> &A, const Matrix<T, OtherDimension, Columns> &B) {
Matrix<T, Rows, Columns> result(0.0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
for (size_t k = 0; k < OtherDimension; k++)
result(i, j) += A(i,k) * B(k, j);
return result;
}
template<typename T, size_t Rows, size_t Columns>
Matrix<T, Rows, Columns> operator*(const Vector<T, Rows> &a, const Vector<T, Columns> &b) {
Matrix<T, Rows, Columns> result(0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
result.updateElement(i, j, a[i] * b[j]);
return result;
}
template<typename T, size_t Rows, size_t Columns>
Vector<T, Rows> operator*(const Matrix<T, Rows, Columns> &A, const Vector<T, Columns> &b) {
Vector<T, Rows> result(0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
result[i] += A(i, j) * b[j];
return result;
}
template<typename T, size_t Rows, size_t Columns>
Vector<T, Columns> operator*(const Vector<T, Rows> &b, const Matrix<T,Rows,Columns> &A) {
Vector<T, Columns> result(0);
for (size_t i = 0; i < Rows; i++)
for (size_t j = 0; j < Columns; j++)
result[j] += b[i] * A(i, j);
return result;
}
// Convert horizontal (Xh) vertical (Yv) and spin (Zs) angles to a rotation matrix.
// Xh: Horizontal rotation, also known as heading or yaw.
// Yv: Vertical rotation, also known as pitch or elevation.
// Zs: Spin rotation, also known as intrinsic rotation, roll or bank.
// Each column of the rotation matrix represents left, up and forward axis.
// Angles of rotation are lowercase (x,y,z) in radians and the rotation matrix is uppercase (X,Y,Z).
// S = sin, C = cos
// The order of rotation is Yaw->Pitch->Roll (Zs*Yv*Xh)
// Zs Yv Xh
// | Cz -Sz 0 0| |Cy 0 Sy 0| |1 0 0 0| | Cz -Sz 0 0| | Cy Sy*Sx Sy*Cx 0|
// | Sz Cz 0 0|*| 0 1 0 0|*|0 Cx -Sx 0| = | Sz Cz 0 0|*| 0 Cx -Sx 0|
// | 0 0 1 0| |-Sy 0 Cy 0| |0 Sx Cx 0| | 0 0 1 0| |-Sy Sx*Cy Cx*Cy 0|
// | 0 0 0 1| | 0 0 0 1| |0 0 0 1| | 0 0 0 1| | 0 0 0 1|
// Left Up Forward
// | Cz*Cy Cz*Sy*Sx-Sz*Cx Sz*Sx+Cz*Sy*Cx 0|
// | Sz*Cy Sz*Sy*Sx+Cz*Cx Cz*Sy*Sx-Sz*Cx 0|
// |-Sy*Cx Cy*Cx Sy 0|
// | 0 0 0 1|
// The order of rotation is Pitch->Yaw->Roll (Zs*Xh*Yv)
// Zs Xh Yv
// | Cz -Sz 0 0| |1 0 0 0| |Cy 0 Sy 0| | Cz -Sz 0 0| | Cy 0 Sy 0|
// | Sz Cz 0 0|*|0 Cx -Sx 0|*| 0 1 0 0| = | Sz Cz 0 0|*| Sx*Sy Cx -Sx*Cy 0|=
// | 0 0 1 0| |0 Sx Cx 0| |-Sy 0 Cy 0| | 0 0 1 0| |-Cx*Sy Sx Cx*Cy 0|
// | 0 0 0 1| |0 0 0 1| | 0 0 0 1| | 0 0 0 1| | 0 0 0 1|
// Left Up Forward
// | Cz*Cy-Sz*Sx*Sy -Sz*Cx Cz*Sy+Sz*Sx*Cy 0|
// | Sz*Cy+Cz*Sx*Sy Cz*Cx Sz*Sy-Cz*Sx*Cy 0|
// |-Cx*Sy Sx Cx*Cy 0|
// | 0 0 0 1|
// The order of rotation is Roll->Pitch->Yaw (Xh*Yv*Zs)
// Xh Yv Zs
// |1 0 0 0| | Cy 0 Sy 0| |Cz -Sz 0 0| |1 0 0 0| | Cy*Cz -Cy*Sz Sy 0|
// |0 Cx -Sx 0|*| 0 1 0 0|*|Sz Cz 0 0| = |0 Cx -Sx 0|*| Sz Cz 0 0|
// |0 Sx Cx 0| |-Sy 0 Cy 0| | 0 0 1 0| |0 Sx Cx 0| |-Sy*Cz Sy*Sz Cy 0|
// |0 0 0 1| | 0 0 0 1| | 0 0 0 1| |0 0 0 1| | 0 0 0 1|
// Left Up Forward
// | Cy*Cz -Cy*Sz Sy 0|
// =| Sx*Sy*Cz+Cx*Sz -Sx*Sy*Sz+Cx*Cz -Sx*Cy 0|
// |-Cx*Sy*Cz+Sx*Sz Cx*Sy*Sz+Sx*Cz Cx*Cy 0|
// | 0 0 0 1|
// just write final answer from here on
// The order of rotation is Pitch->Roll->Yaw (Xh*Zs*Yv)
// Left Up Forward
// |Cz*Cy -Sz Cz*Sy 0|
//Xh*Zs*Yv=|Cx*Cy*Sz+Sx*Sy Cx*Cz Cx*Sz*Sy-Cy*Sx 0|
// |Cy*Sx*Sz-Cx*Sy Cz*Sx Sx*Sz*Sy+Cx*Cy 0|
// |0 0 0 1|
// The order of rotation is Roll->Yaw->Pitch (Yv*Xh*Zs)
// Left Up Forward
// |Cy*Cz+Sy*Sx*Sz Cz*Sy*Sx-Cy*Sz Cx*Sy 0|
//Yv*Xh*Zs=|Cx*Sz Cx*Cz -Sx 0|
// |Cy*Sx*Sz-Cz*Sy Cy*Cz*Sx+Sy*Sz Cy*Cx 0|
// |0 0 0 1|
// The order of rotation is Yaw->Roll->Pitch (Yv*Zs*Xh)
// Left Up Forward
// |Cy*Cz Sy*Sx-Cy*Cx*Sz Cx*Sy+Cy*Sz*Sx 0|
//Yv*Zs*Xh= |Sz Cz*Cx -Cz*Sx 0|
// |-Cz*Sy Cy*Sx+Cx*Sy*Sz Cy*Cx-Sy*Sz*Sx 0|
// |0 0 0 1|
enum RotationSequence {
XYZ,
XZY,
YXZ,
YZX,
ZXY,
ZYX
};
template<typename T>
Matrix<T, 4, 4> getRotationMatrix(Vector<T,3> ypr, bool radians, RotationSequence rotationSequence) {
Matrix<T,4,4> rotation(0);
T Sx, Cx, Sy, Cy, Sz, Cz;
Vector<T,3> angles = ypr;
if(!radians)
angles *= M_PI/180;
Sx = -sin(angles[0]); Cx = cos(angles[0]);
Sy = -sin(angles[1]); Cy = cos(angles[1]);
Sz = -sin(angles[2]); Cz = cos(angles[2]);
switch (rotationSequence) {
case ZXY:
// | Cz*Cy-Sz*Sx*Sy -Sz*Cx Cz*Sy+Sz*Sx*Cy 0|
// | Sz*Cy+Cz*Sx*Sy Cz*Cx Sz*Sy-Cz*Sx*Cy 0|
// |-Cx*Sy Sx Cx*Cy 0|
// | 0 0 0 1|
rotation.updateElement(0, 0, Cz * Cy - Sz * Sx * Sy);
rotation.updateElement(0, 1, -Sz * Cx);
rotation.updateElement(0, 2, Cz * Sy + Sz * Sx * Cy);
rotation.updateElement(1, 0, Sz * Cy + Cz * Sx * Sy);
rotation.updateElement(1, 1, Cz * Cx);
rotation.updateElement(1, 2, Sz * Sy - Cz * Sx * Cy);
rotation.updateElement(2, 0, -Cx * Sy);
rotation.updateElement(2, 1, Sx);
rotation.updateElement(2, 2, Cx * Cy);
break;
case ZYX:
// | Cz*Cy Cz*Sy*Sx-Sz*Cx Sz*Sx+Cz*Sy*Cx 0|
// | Sz*Cy Sz*Sy*Sx+Cz*Cx Sz*Sy*Cx-Cz*Sx 0|
// |-Sy Cy*Sx Cy*Cx 0|
// | 0 0 0 1|
rotation.updateElement(0, 0, Cz * Cy);
rotation.updateElement(0, 1, Sx * Sy * Cz - Sz * Cx);
rotation.updateElement(0, 2, Sz * Sx + Cz * Sy * Cx);
rotation.updateElement(1, 0, Sz * Cy);
rotation.updateElement(1, 1, Sz * Sy * Sx + Cz * Cx);
rotation.updateElement(1, 2, Sz * Sy * Cx - Cz * Sx);
rotation.updateElement(2, 0, -Sy);
rotation.updateElement(2, 1, Cy * Sx);
rotation.updateElement(2, 2, Cy*Cx);
break;
case XYZ:
// | Cy*Cz -Cy*Sz Sy 0|
// =| Sx*Sy*Cz+Cx*Sz -Sx*Sy*Sz+Cx*Cz -Sx*Cy 0|
// |-Cx*Sy*Cz+Sx*Sz Cx*Sy*Sz+Sx*Cz Cx*Cy 0|
// | 0 0 0 1|
rotation.updateElement(0, 0, Cy * Cz);
rotation.updateElement(0, 1, -Cy * Sz);
rotation.updateElement(0, 2, Sy);
rotation.updateElement(1, 0, Sx * Sy * Cz + Cx * Sz);
rotation.updateElement(1, 1, -Sx * Sy * Sz + Cx * Cz);
rotation.updateElement(1, 2, -Sx * Cy);
rotation.updateElement(2, 0, -Cx * Sy * Cz + Sx * Sz);
rotation.updateElement(2, 1, Cx * Sy * Sz + Sx * Cz);
rotation.updateElement(2, 2, Cx * Cy);
break;
case XZY:
// |Cz*Cy -Sz Cz*Sy 0|
//Xh*Zs*Yv=|Cx*Cy*Sz+Sx*Sy Cx*Cz Cx*Sz*Sy-Cy*Sx 0|
// |Cy*Sx*Sz-Cx*Sy Cz*Sx Sx*Sz*Sy+Cx*Cy 0|
// |0 0 0 1|
rotation.updateElement(0, 0, Cy * Cz);
rotation.updateElement(0, 1, -Sz);
rotation.updateElement(0, 2, Cz * Sy);
rotation.updateElement(1, 0, Cx * Cy * Sz + Sx * Sy);
rotation.updateElement(1, 1, Cx * Cz);
rotation.updateElement(1, 2, Cx * Sy * Sz - Sx * Cy);
rotation.updateElement(2, 0, Sx * Cy * Sz - Cx * Sy);
rotation.updateElement(2, 1, Sx * Cz);
rotation.updateElement(2, 2, Sx * Sy * Sz + Cx * Cy);
break;
case YXZ:
// |Cy*Cz+Sy*Sx*Sz Cz*Sy*Sx-Cy*Sz Cx*Sy 0|
//Yv*Xh*Zs=|Cx*Sz Cx*Cz -Sx 0|
// |Cy*Sx*Sz-Cz*Sy Cy*Cz*Sx+Sy*Sz Cy*Cx 0|
// |0 0 0 1|
rotation.updateElement(0, 0, Cy*Cz+Sy*Sx*Sz );
rotation.updateElement(0, 1, Cz*Sy*Sx-Cy*Sz);
rotation.updateElement(0, 2, Sy*Cx);
rotation.updateElement(1, 0, Cx*Sz);
rotation.updateElement(1, 1, Cx*Cz);
rotation.updateElement(1, 2, -Sx);
rotation.updateElement(2, 0, Cy*Sx*Sz-Cz*Sy);
rotation.updateElement(2, 1, Cy*Cz*Sx+Sy*Sz);
rotation.updateElement(2, 2, Cy*Cx);
break;
case YZX:
// |Cy*Cz Sy*Sx-Cy*Cx*Sz Cx*Sy+Cy*Sz*Sx 0|
//Yv*Zs*Xh= |Sz Cz*Cx -Cz*Sx 0|
// |-Cz*Sy Cy*Sx+Cx*Sy*Sz Cy*Cx-Sy*Sz*Sx 0|
// |0 0 0 1|
rotation.updateElement(0, 0, Cy*Cz);
rotation.updateElement(0, 1, Sy*Sx-Cy*Cx*Sz);
rotation.updateElement(0, 2, Cx*Sy+Cy*Sz*Sx);
rotation.updateElement(1, 0, Sz);
rotation.updateElement(1, 1, Cz*Cx);
rotation.updateElement(1, 2, -Cz*Sx);
rotation.updateElement(2, 0, -Cz*Sy);
rotation.updateElement(2, 1, Cy*Sx+Cx*Sy*Sz);
rotation.updateElement(2, 2, Cy*Cx-Sy*Sz*Sx);
break;
}
rotation.updateElement(3, 3, 1);
return rotation;
}
template<typename T>
Matrix<T, 4, 4> getRotationMatrixFromVectorAngle(Vector<T, 4> rotationVector, bool radians) {
Vector<T,3> rotationVector3 = {{rotationVector[0], rotationVector[1], rotationVector[2]}};
T theta = rotationVector3.magnitude();
if (!radians)
theta *= M_PI / 180;
Vector<T,3> axis = rotationVector3;
if (theta != 0)
axis = axis.normalize();
Matrix<T,4,4> rotation = Matrix<T,4,4>::identity();
T S = sin(theta);
T C = cos(theta);
T OMC = 1 - C;
T a00 = axis[0] * axis[0] * OMC;
T a01 = axis[0] * axis[1] * OMC;
T a02 = axis[0] * axis[2] * OMC;
T a10 = axis[1] * axis[0] * OMC;
T a11 = axis[1] * axis[1] * OMC;
T a12 = axis[1] * axis[2] * OMC;
T a20 = axis[2] * axis[0] * OMC;
T a21 = axis[2] * axis[1] * OMC;
T a22 = axis[2] * axis[2] * OMC;
T a0S = axis[0] * S;
T a1S = axis[1] * S;
T a2S = axis[2] * S;
rotation.updateElement(0, 0, C + a00);
rotation.updateElement(0, 1, a01 - a2S);
rotation.updateElement(0, 2, a02 + a1S);
rotation.updateElement(1, 0, a10 + a2S);
rotation.updateElement(1, 1, C + a11);
rotation.updateElement(1, 2, a12 - a0S);
rotation.updateElement(2, 0, a20 - a1S);
rotation.updateElement(2, 1, a21 + a0S);
rotation.updateElement(2, 2, C + a22);
return rotation;
}
enum class MatrixElements {
r00, r01, r02,
r10, r11, r12,
r20, r21, r22,
};
template<typename T>
T findValue(Vector<T,3> ypr, MatrixElements matrixElement, RotationSequence rotationSequence) {
T Sx, Cx, Sy, Cy, Sz, Cz;
Vector<T,3> angles = ypr;
Sx = sin(angles[0]); Cx = cos(angles[0]);
Sy = sin(angles[1]); Cy = cos(angles[1]);
Sz = sin(angles[2]); Cz = cos(angles[2]);
switch (rotationSequence) {
case ZXY:
switch (matrixElement) {
case MatrixElements::r00:
return Cz * Cy - Sz * Sx * Sy;
case MatrixElements::r01:
return -Sz * Cx;
case MatrixElements::r02:
return Cz * Sy + Sz * Sx * Cy;
case MatrixElements::r10:
return Sz * Cy + Cz * Sx * Sy;
case MatrixElements::r11:
return Cz * Cx;
case MatrixElements::r12:
return Sz * Sy - Cz * Sx * Cy;
case MatrixElements::r20:
return -Cx * Sy;
case MatrixElements::r21:
return Sx;
case MatrixElements::r22:
return Cx * Cy;
}
break;
case ZYX:
switch (matrixElement) {
case MatrixElements::r00:
return Cz * Cy;
case MatrixElements::r01:
return Sx * Sy * Cz + Cx * Sz;
case MatrixElements::r02:
return -Cx * Sy * Cz + Sx * Sz;
case MatrixElements::r10:
return Cz * Sy;
case MatrixElements::r11:
return Sx * Sy * Sz - Cx * Cz;
case MatrixElements::r12:
return Cx * Sy * Sz + Sx * Cz;
case MatrixElements::r20:
return -Sy;
case MatrixElements::r21:
return Cy * Sx;
case MatrixElements::r22:
return Cy * Cx;
}
break;
case XYZ:
switch (matrixElement) {
case MatrixElements::r00:
return Cy * Cz;
case MatrixElements::r01:
return -Cy * Sz;
case MatrixElements::r02:
return Sy;
case MatrixElements::r10:
return Sx * Sy * Cz + Cx * Sz;
case MatrixElements::r11:
return -Sx * Sy * Sz + Cx * Cz;
case MatrixElements::r12:
return -Sx * Cy;
case MatrixElements::r20:
return -Cx * Sy * Cz + Sx * Sz;
case MatrixElements::r21:
return Cx * Sy * Sz + Sx * Cz;
case MatrixElements::r22:
return Cx * Cy;
}
break;
case XZY:
switch (matrixElement) {
case MatrixElements::r00:
return Cy * Cz;
case MatrixElements::r01:
return -Sz;
case MatrixElements::r02:
return Cz * Sy;
case MatrixElements::r10:
return Cx * Cy * Sz + Sx * Sy;
case MatrixElements::r11:
return Cx * Cz;
case MatrixElements::r12:
return Cx * Sy * Sz - Sx * Cy;
case MatrixElements::r20:
return Sx * Cy * Sz - Cx * Sy;
case MatrixElements::r21:
return Sx * Cz;
case MatrixElements::r22:
return Sx * Sy * Sz + Cx * Cy;
}
break;
case YXZ:
switch (matrixElement) {
case MatrixElements::r00:
return Cy * Cz + Sy * Sx * Sz;
case MatrixElements::r01:
return Cz * Sy * Sx - Cy * Sz;
case MatrixElements::r02:
return Cx * Sy;
case MatrixElements::r10:
return Cx * Sz;
case MatrixElements::r11:
return Cx * Cz;
case MatrixElements::r12:
return -Sx;
case MatrixElements::r20:
return -Cz * Sy + Cy * Sx * Sz;
case MatrixElements::r21:
return Cy * Cz * Sx + Sy * Sz;
case MatrixElements::r22:
return Cy * Cx;
}
break;
case YZX:
switch (matrixElement) {
case MatrixElements::r00:
return Cy * Cz;
case MatrixElements::r01:
return Sy * Sx - Cy * Cx * Sz;
case MatrixElements::r02:
return Cx * Sy + Cy * Sz * Sx;
case MatrixElements::r10:
return Sz;
case MatrixElements::r11:
return Cx * Cz;
case MatrixElements::r12:
return -Cz * Sx;
case MatrixElements::r20:
return -Cz * Sy;
case MatrixElements::r21:
return Cy * Sx + Cx * Sy * Sz;
case MatrixElements::r22:
return Cy * Cx - Sy * Sz * Sx;
}
break;
}
return 0;
}
template<typename T>
Matrix<T, 4,4 > getTransformMatrix(Vector<T,3> xyz, Vector<T,3> ypr, bool radians) {
Matrix<T,4,4> transform( 0);
Matrix<T,3,3> rotation = getRotationMatrix(ypr, radians);
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
transform.updateElement(i, j, rotation.getElement(i, j));
transform.updateElement(0,3, xyz[0]);
transform.updateElement(1,3, xyz[1]);
transform.updateElement(2,3, xyz[2]);
transform.updateElement(3,3, 1);
return transform;
}
template<typename T>
Vector<T,3> getTranslationVector(Matrix<T, 4,4 > transform_matrix) {
Vector<T,3> xyz;
xyz.push_back(transform_matrix.getElement(0,3));
xyz.push_back(transform_matrix.getElement(1,3));
xyz.push_back(transform_matrix.getElement(2,3));
return xyz;
}
template<typename T>
Vector<T,3> getYprVector(Matrix<T, 4,4 > transform_matrix) {
Vector<T,3> result;
Matrix<T,3,3> rotation(0);
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
rotation.updateElement(i, j, transform_matrix.getElement(i, j));
T sy = sqrt(rotation.getElement(0,0) * rotation.getElement(0,0) + rotation.getElement(1,0) * rotation.getElement(1,0) );
bool singular = sy < 1e-6;
T x, y, z;
if (!singular) {
x = atan2(rotation.getElement(1,0), rotation.getElement(0,0));
y = atan2(-rotation.getElement(2,0), sy);
z = atan2(rotation.getElement(2,1), rotation.getElement(2,2));
}
else {
x = 0;
y = atan2(-rotation.getElement(2,0), sy);
z = atan2(-rotation.getElement(1,2), rotation.getElement(1,1));
}
result.push_back(x);
result.push_back(y);
result.push_back(z);
return result;
}
Matrix<float,4,4> GetPerspectiveMatrix( float viewWidth, float viewHeight, float nearVal, float farVal, bool actionType = false);
Matrix<float,4,4> GetOrthographicMatrix( float viewWidth, float viewHeight, float nearVal, float farVal, bool actionType = false);
template<typename T>
static Matrix<T,4,4> GetObliqueMatrix( T width, T height,T nearVal,T farVal, bool actionType = false) {
int sign =1;
if (actionType)
sign=-1;
Matrix<T,4,4> result(0);
result.updateElement(0,0,sign * nearVal/width);
result.updateElement(1,1, sign * nearVal/height);
result.updateElement(2,2,sign * (farVal + nearVal)/( farVal - nearVal ));
result.updateElement(3,2,sign * 2*farVal * nearVal/( farVal - nearVal ));
result.updateElement(2,3,-sign);
return result;
}
class Shader {
public:
Shader() = default;
Shader(std::string_view vertexSource, std::string_view fragmentSource);
~Shader();
Shader(const Shader&) = delete;
Shader(Shader&& other) noexcept;
Shader& operator=(const Shader&) = delete;
Shader& operator=(Shader&& other) noexcept;
void bind() const;
void unbind() const;
void setUniform(std::string_view name, const int &value);
void setUniform(std::string_view name, const float &value);
template<size_t N>
void setUniform(std::string_view name, const Vector<float, N> &value) {
if (N == 2)
glUniform2f(getUniformLocation(name), value[0], value[1]);
else if (N == 3)
glUniform3f(getUniformLocation(name), value[0], value[1], value[2]);
else if (N == 4)
glUniform4f(getUniformLocation(name), value[0], value[1], value[2],value[3]);
}
template<size_t N>
void setUniform(std::string_view name, Matrix<float, N, N> &value){
glUniformMatrix4fv(getUniformLocation(name), 1, GL_FALSE, value.data());
}
private:
void compile(GLuint shader, std::string_view source) const;
GLint getUniformLocation(std::string_view name);
private:
GLuint m_program = 0;
std::map<std::string, GLint> m_uniforms;
};
enum class BufferType {
Vertex = GL_ARRAY_BUFFER,
Index = GL_ELEMENT_ARRAY_BUFFER
};
template<typename T>
class Buffer {
public:
Buffer() = default;
Buffer(BufferType type, std::span<const T> data);
~Buffer();
Buffer(const Buffer&) = delete;
Buffer(Buffer&& other) noexcept;
Buffer& operator=(const Buffer&) = delete;
Buffer& operator=(Buffer&& other) noexcept;
void bind() const;
void unbind() const;
void draw(unsigned primitive) const;
size_t getSize() const;
void update(std::span<const T> data);
private:
GLuint m_buffer = 0;
size_t m_size = 0;
GLuint m_type = 0;
};
extern template class Buffer<float>;
extern template class Buffer<u32>;
extern template class Buffer<u16>;
extern template class Buffer<u8>;
class VertexArray {
public:
VertexArray();
~VertexArray();
VertexArray(const VertexArray&) = delete;
VertexArray(VertexArray&& other) noexcept;
VertexArray& operator=(const VertexArray&) = delete;
VertexArray& operator=(VertexArray&& other) noexcept;
template<typename T>
void addBuffer(u32 index, const Buffer<T> &buffer, u32 size = 3) const {
glEnableVertexAttribArray(index);
buffer.bind();
glVertexAttribPointer(index, size, gl::impl::getType<T>(), GL_FALSE, size * sizeof(T), nullptr);
buffer.unbind();
}
void bind() const;
void unbind() const;
private:
2023-11-10 20:47:08 +01:00
GLuint m_array = 0;
};
class Texture {
public:
Texture(u32 width, u32 height);
~Texture();
Texture(const Texture&) = delete;
Texture(Texture&& other) noexcept;
Texture& operator=(const Texture&) = delete;
Texture& operator=(Texture&& other) noexcept;
void bind() const;
void unbind() const;
GLuint getTexture() const;
u32 getWidth() const;
u32 getHeight() const;
GLuint release();
private:
GLuint m_texture;
u32 m_width, m_height;
};
class FrameBuffer {
public:
FrameBuffer(u32 width, u32 height);
~FrameBuffer();
FrameBuffer(const FrameBuffer&) = delete;
FrameBuffer(FrameBuffer&& other) noexcept;
FrameBuffer& operator=(const FrameBuffer&) = delete;
FrameBuffer& operator=(FrameBuffer&& other) noexcept;
void bind() const;
void unbind() const;
void attachTexture(const Texture &texture) const;
private:
GLuint m_frameBuffer, m_renderBuffer;
};
class AxesVectors {
public:
AxesVectors();
const std::vector<float>& getVertices() const {
return m_vertices;
}
const std::vector<float>& getColors() const {
return m_colors;
}
const std::vector<u8>& getIndices() const {
return m_indices;
}
private:
std::vector<float> m_vertices;
std::vector<float> m_colors;
std::vector<u8> m_indices;
};
class AxesBuffers {
public:
AxesBuffers(const VertexArray& axesVertexArray, const AxesVectors &axesVectors);
const gl::Buffer<float>& getVertices() const {
return m_vertices;
}
const gl::Buffer<float>& getColors() const {
return m_colors;
}
const gl::Buffer<u8>& getIndices() const {
return m_indices;
}
private:
gl::Buffer<float> m_vertices;
gl::Buffer<float> m_colors;
gl::Buffer<u8> m_indices;
};
class GridVectors {
public:
GridVectors(int sliceCount);
u32 getSlices() const {
return m_slices;
}
const std::vector<float>& getVertices() const {
return m_vertices;
}
const std::vector<float>& getColors() const {
return m_colors;
}
const std::vector<u8>& getIndices() const {
return m_indices;
}
private:
u32 m_slices;
std::vector<float> m_vertices;
std::vector<float> m_colors;
std::vector<u8> m_indices;
};
class GridBuffers {
public:
GridBuffers(const VertexArray &gridVertexArray, const GridVectors &gridVectors);
const gl::Buffer<float>& getVertices() const {
return m_vertices;
}
const gl::Buffer<float>& getColors() const {
return m_colors;
}
const gl::Buffer<u8>& getIndices() const {
return m_indices;
}
private:
gl::Buffer<float> m_vertices;
gl::Buffer<float> m_colors;
gl::Buffer<u8> m_indices;
};
class LightSourceVectors {
public:
LightSourceVectors(int res);
void moveTo(const Vector<float, 3> &position);
const std::vector<float>& getVertices() const {
return m_vertices;
}
const std::vector<float>& getNormals() const {
return m_normals;
}
const std::vector<float>& getColors() const {
return m_colors;
}
const std::vector<u16>& getIndices() const {
return m_indices;
}
void setColor(float r, float g, float b) {
for (u32 i = 4; i < m_colors.size(); i += 4) {
m_colors[i - 4] = r;
m_colors[i - 3] = g;
m_colors[i - 2] = b;
m_colors[i - 1] = 1.0F;
}
}
private:
int m_resolution;
float m_radius;
std::vector<float> m_vertices;
std::vector<float> m_normals;
std::vector<float> m_colors;
std::vector<u16> m_indices;
};
class LightSourceBuffers {
public:
LightSourceBuffers(const VertexArray &sourceVertexArray, const LightSourceVectors &sourceVectors);
void moveVertices(const VertexArray &sourceVertexArray, const LightSourceVectors& sourceVectors);
void updateColors(const VertexArray& sourceVertexArray, const LightSourceVectors& sourceVectors);
const gl::Buffer<float>& getVertices() const {
return m_vertices;
}
const gl::Buffer<float>& getNormals() const {
return m_normals;
}
const gl::Buffer<float>& getColors() const {
return m_colors;
}
const gl::Buffer<u16>& getIndices() const {
return m_indices;
}
private:
gl::Buffer<float> m_vertices;
gl::Buffer<float> m_normals;
gl::Buffer<float> m_colors;
gl::Buffer<u16> m_indices;
};
}