2020-11-28 21:55:52 +01:00
|
|
|
#include "helpers/patches.hpp"
|
2020-11-27 09:09:48 +01:00
|
|
|
|
|
|
|
#include <concepts>
|
|
|
|
#include <cstring>
|
|
|
|
#include <string_view>
|
|
|
|
#include <type_traits>
|
|
|
|
|
2020-11-28 21:55:52 +01:00
|
|
|
#include "helpers/utils.hpp"
|
2020-11-27 09:09:48 +01:00
|
|
|
|
|
|
|
namespace hex {
|
|
|
|
|
|
|
|
static void pushBytesBack(std::vector<u8> &buffer, const char* bytes) {
|
|
|
|
std::string_view string(bytes);
|
|
|
|
buffer.resize(buffer.size() + string.length());
|
|
|
|
std::memcpy((&buffer.back() - string.length()) + 1, string.begin(), string.length());
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static void pushBytesBack(std::vector<u8> &buffer, T bytes) {
|
|
|
|
buffer.resize(buffer.size() + sizeof(T));
|
|
|
|
std::memcpy((&buffer.back() - sizeof(T)) + 1, &bytes, sizeof(T));
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<u8> generateIPSPatch(const Patches &patches) {
|
|
|
|
std::vector<u8> result;
|
|
|
|
|
|
|
|
pushBytesBack(result, "PATCH");
|
|
|
|
|
|
|
|
std::vector<u64> addresses;
|
|
|
|
std::vector<u8> values;
|
|
|
|
|
|
|
|
for (const auto &[address, value] : patches) {
|
|
|
|
addresses.push_back(address);
|
|
|
|
values.push_back(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::optional<u64> startAddress;
|
|
|
|
std::vector<u8> bytes;
|
|
|
|
for (u32 i = 0; i < addresses.size(); i++) {
|
|
|
|
if (!startAddress.has_value())
|
|
|
|
startAddress = addresses[i];
|
|
|
|
|
|
|
|
if (i != addresses.size() - 1 && addresses[i] == (addresses[i + 1] - 1)) {
|
|
|
|
bytes.push_back(values[i]);
|
|
|
|
} else {
|
|
|
|
bytes.push_back(values[i]);
|
|
|
|
|
|
|
|
if (bytes.size() > 0xFFFF || startAddress > 0xFF'FFFF)
|
|
|
|
return { };
|
|
|
|
|
|
|
|
u32 address = startAddress.value();
|
|
|
|
auto addressBytes = reinterpret_cast<u8*>(&address);
|
|
|
|
|
|
|
|
result.push_back(addressBytes[2]); result.push_back(addressBytes[1]); result.push_back(addressBytes[0]);
|
|
|
|
pushBytesBack<u16>(result, changeEndianess<u16>(bytes.size(), std::endian::big));
|
|
|
|
|
|
|
|
for (auto byte : bytes)
|
|
|
|
result.push_back(byte);
|
|
|
|
|
|
|
|
bytes.clear();
|
|
|
|
startAddress = { };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pushBytesBack(result, "EOF");
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<u8> generateIPS32Patch(const Patches &patches) {
|
|
|
|
std::vector<u8> result;
|
|
|
|
|
|
|
|
pushBytesBack(result, "IPS32");
|
|
|
|
|
|
|
|
std::vector<u64> addresses;
|
|
|
|
std::vector<u8> values;
|
|
|
|
|
|
|
|
for (const auto &[address, value] : patches) {
|
|
|
|
addresses.push_back(address);
|
|
|
|
values.push_back(value);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::optional<u64> startAddress;
|
|
|
|
std::vector<u8> bytes;
|
|
|
|
for (u32 i = 0; i < addresses.size(); i++) {
|
|
|
|
if (!startAddress.has_value())
|
|
|
|
startAddress = addresses[i];
|
|
|
|
|
|
|
|
if (i != addresses.size() - 1 && addresses[i] == (addresses[i + 1] - 1)) {
|
|
|
|
bytes.push_back(values[i]);
|
|
|
|
} else {
|
|
|
|
bytes.push_back(values[i]);
|
|
|
|
|
|
|
|
if (bytes.size() > 0xFFFF || startAddress > 0xFFFF'FFFF)
|
|
|
|
return { };
|
|
|
|
|
|
|
|
u32 address = startAddress.value();
|
|
|
|
auto addressBytes = reinterpret_cast<u8*>(&address);
|
|
|
|
|
|
|
|
result.push_back(addressBytes[3]); result.push_back(addressBytes[2]); result.push_back(addressBytes[1]); result.push_back(addressBytes[0]);
|
|
|
|
pushBytesBack<u16>(result, changeEndianess<u16>(bytes.size(), std::endian::big));
|
|
|
|
|
|
|
|
for (auto byte : bytes)
|
|
|
|
result.push_back(byte);
|
|
|
|
|
|
|
|
bytes.clear();
|
|
|
|
startAddress = { };
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
pushBytesBack(result, "EEOF");
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|