1
0
mirror of synced 2024-12-21 03:55:56 +01:00
ImHex/lib/libimhex/source/providers/undo/stack.cpp

140 lines
3.5 KiB
C++
Raw Normal View History

#include <hex/providers/undo_redo/stack.hpp>
#include <hex/providers/undo_redo/operations/operation_group.hpp>
#include <hex/providers/provider.hpp>
#include <wolv/utils/guards.hpp>
#include <atomic>
namespace hex::prv::undo {
namespace {
std::atomic<bool> s_locked;
std::mutex s_mutex;
}
Stack::Stack(Provider *provider) : m_provider(provider) {
}
void Stack::undo(u32 count) {
std::scoped_lock lock(s_mutex);
s_locked = true;
ON_SCOPE_EXIT { s_locked = false; };
// If there are no operations, we can't undo anything.
2023-12-19 13:10:25 +01:00
if (m_undoStack.empty())
return;
for (u32 i = 0; i < count; i += 1) {
// If we reached the start of the list, we can't undo anymore.
if (!this->canUndo()) {
return;
}
// Move last element from the undo stack to the redo stack
2023-12-19 13:10:25 +01:00
m_redoStack.emplace_back(std::move(m_undoStack.back()));
m_redoStack.back()->undo(m_provider);
m_undoStack.pop_back();
}
}
void Stack::redo(u32 count) {
std::scoped_lock lock(s_mutex);
s_locked = true;
ON_SCOPE_EXIT { s_locked = false; };
// If there are no operations, we can't redo anything.
2023-12-19 13:10:25 +01:00
if (m_redoStack.empty())
return;
for (u32 i = 0; i < count; i += 1) {
// If we reached the end of the list, we can't redo anymore.
if (!this->canRedo()) {
return;
}
// Move last element from the undo stack to the redo stack
2023-12-19 13:10:25 +01:00
m_undoStack.emplace_back(std::move(m_redoStack.back()));
m_undoStack.back()->redo(m_provider);
m_redoStack.pop_back();
}
}
void Stack::groupOperations(u32 count, const UnlocalizedString &unlocalizedName) {
if (count <= 1)
return;
auto operation = std::make_unique<OperationGroup>(unlocalizedName);
2023-12-19 13:10:25 +01:00
i64 startIndex = std::max<i64>(0, m_undoStack.size() - count);
// Move operations from our stack to the group in the same order they were added
for (u32 i = 0; i < count; i += 1) {
i64 index = startIndex + i;
m_undoStack[index]->undo(m_provider);
2023-12-19 13:10:25 +01:00
operation->addOperation(std::move(m_undoStack[index]));
}
// Remove the empty operations from the stack
2023-12-19 13:10:25 +01:00
m_undoStack.resize(startIndex);
this->add(std::move(operation));
}
void Stack::apply(const Stack &otherStack) {
for (const auto &operation : otherStack.m_undoStack) {
this->add(operation->clone());
}
}
void Stack::reapply() {
for (const auto &operation : m_undoStack) {
operation->redo(m_provider);
}
}
bool Stack::add(std::unique_ptr<Operation> &&operation) {
// If we're already inside of an undo/redo operation, ignore new operations being added
if (s_locked)
return false;
s_locked = true;
ON_SCOPE_EXIT { s_locked = false; };
std::scoped_lock lock(s_mutex);
// Clear the redo stack
2023-12-19 13:10:25 +01:00
m_redoStack.clear();
// Insert the new operation at the end of the list
2023-12-19 13:10:25 +01:00
m_undoStack.emplace_back(std::move(operation));
// Do the operation
2023-12-19 13:10:25 +01:00
this->getLastOperation()->redo(m_provider);
return true;
}
bool Stack::canUndo() const {
2023-12-19 13:10:25 +01:00
return !m_undoStack.empty();
}
bool Stack::canRedo() const {
2023-12-19 13:10:25 +01:00
return !m_redoStack.empty();
}
}