#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TOKEN_CONCAT_IMPL(x, y) x##y #define TOKEN_CONCAT(x, y) TOKEN_CONCAT_IMPL(x, y) #define ANONYMOUS_VARIABLE(prefix) TOKEN_CONCAT(prefix, __COUNTER__) struct ImVec2; namespace hex { long double operator""_scaled(long double value); long double operator""_scaled(unsigned long long value); ImVec2 scaled(const ImVec2 &vector); std::string to_string(u128 value); std::string to_string(i128 value); std::string toByteString(u64 bytes); std::string makePrintable(u8 c); void runCommand(const std::string &command); void openWebpage(std::string url); std::string encodeByteString(const std::vector &bytes); std::vector decodeByteString(const std::string &string); [[nodiscard]] constexpr inline u64 extract(u8 from, u8 to, const std::unsigned_integral auto &value) { if (from < to) std::swap(from, to); using ValueType = std::remove_cvref_t; ValueType mask = (std::numeric_limits::max() >> (((sizeof(value) * 8) - 1) - (from - to))) << to; return (value & mask) >> to; } [[nodiscard]] inline u64 extract(u32 from, u32 to, const std::vector &bytes) { u8 index = 0; while (from > 32 && to > 32) { from -= 8; to -= 8; index++; } u64 value = 0; std::memcpy(&value, &bytes[index], std::min(sizeof(value), bytes.size() - index)); u64 mask = (std::numeric_limits::max() >> (64 - (from + 1))); return (value & mask) >> to; } constexpr inline i128 signExtend(size_t numBits, i128 value) { i128 mask = 1U << (numBits - 1); return (value ^ mask) - mask; } template constexpr inline T swapBitOrder(size_t numBits, T value) { T result = 0x00; for (size_t bit = 0; bit < numBits; bit++) { result <<= 1; result |= (value & (1 << bit)) != 0; } return result; } template struct overloaded : Ts... { using Ts::operator()...; }; template overloaded(Ts...) -> overloaded; template struct SizeTypeImpl { }; template<> struct SizeTypeImpl<1> { using Type = u8; }; template<> struct SizeTypeImpl<2> { using Type = u16; }; template<> struct SizeTypeImpl<4> { using Type = u32; }; template<> struct SizeTypeImpl<8> { using Type = u64; }; template<> struct SizeTypeImpl<16> { using Type = u128; }; template using SizeType = typename SizeTypeImpl::Type; template constexpr T changeEndianess(const T &value, std::endian endian) { if (endian == std::endian::native) return value; constexpr auto Size = sizeof(T); SizeType unswapped; std::memcpy(&unswapped, &value, Size); SizeType swapped; if constexpr (!std::has_single_bit(Size) || Size > 16) static_assert(always_false::value, "Invalid type provided!"); switch (Size) { case 1: swapped = unswapped; break; case 2: swapped = __builtin_bswap16(unswapped); break; case 4: swapped = __builtin_bswap32(unswapped); break; case 8: swapped = __builtin_bswap64(unswapped); break; case 16: swapped = (u128(__builtin_bswap64(unswapped & 0xFFFF'FFFF'FFFF'FFFF)) << 64) | __builtin_bswap64(u128(unswapped) >> 64); break; default: hex::unreachable(); } T result; std::memcpy(&result, &swapped, Size); return result; } [[nodiscard]] constexpr u128 bitmask(u8 bits) { return u128(-1) >> (128 - bits); } template constexpr T changeEndianess(T value, size_t size, std::endian endian) { if (endian == std::endian::native) return value; u128 unswapped = 0; std::memcpy(&unswapped, &value, size); u128 swapped; switch (size) { case 1: swapped = unswapped; break; case 2: swapped = __builtin_bswap16(unswapped); break; case 4: swapped = __builtin_bswap32(unswapped); break; case 8: swapped = __builtin_bswap64(unswapped); break; case 16: swapped = (u128(__builtin_bswap64(unswapped & 0xFFFF'FFFF'FFFF'FFFF)) << 64) | __builtin_bswap64(u128(unswapped) >> 64); break; default: hex::unreachable(); } T result = 0; std::memcpy(&result, &swapped, size); return result; } template constexpr T bit_width(T x) noexcept { return std::numeric_limits::digits - std::countl_zero(x); } template constexpr T bit_ceil(T x) noexcept { if (x <= 1u) return T(1); return T(1) << bit_width(T(x - 1)); } template auto powi(T base, U exp) { using ResultType = decltype(T{} * U{}); if (exp < 0) return ResultType(0); ResultType result = 1; while (exp != 0) { if ((exp & 0b1) == 0b1) result *= base; exp >>= 1; base *= base; } return result; } template void moveToVector(std::vector &buffer, T &&first, Args &&...rest) { buffer.push_back(std::move(first)); if constexpr (sizeof...(rest) > 0) moveToVector(buffer, std::move(rest)...); } template std::vector moveToVector(T &&first, Args &&...rest) { std::vector result; moveToVector(result, T(std::move(first)), std::move(rest)...); return result; } std::vector splitString(const std::string &string, const std::string &delimiter); std::string combineStrings(const std::vector &strings, const std::string &delimiter = ""); std::string toEngineeringString(double value); template std::vector toBytes(T value) { std::vector bytes(sizeof(T)); std::memcpy(bytes.data(), &value, sizeof(T)); return bytes; } inline std::vector parseByteString(const std::string &string) { auto byteString = std::string(string); byteString.erase(std::remove(byteString.begin(), byteString.end(), ' '), byteString.end()); if ((byteString.length() % 2) != 0) return {}; std::vector result; for (u32 i = 0; i < byteString.length(); i += 2) { if (!std::isxdigit(byteString[i]) || !std::isxdigit(byteString[i + 1])) return {}; result.push_back(std::strtoul(byteString.substr(i, 2).c_str(), nullptr, 16)); } return result; } inline std::string toBinaryString(std::unsigned_integral auto number) { if (number == 0) return "0"; std::string result; for (i16 bit = hex::bit_width(number) - 1; bit >= 0; bit--) result += (number & (0b1 << bit)) == 0 ? '0' : '1'; return result; } template inline void trimLeft(std::basic_string &s) { s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](unsigned char ch) { return !std::isspace(ch) && ch >= 0x20; })); } template inline void trimRight(std::basic_string &s) { s.erase(std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) { return !std::isspace(ch) && ch >= 0x20; }).base(), s.end()); } template inline void trim(std::basic_string &s) { trimLeft(s); trimRight(s); } float float16ToFloat32(u16 float16); inline bool equalsIgnoreCase(const std::string &left, const std::string &right) { return std::equal(left.begin(), left.end(), right.begin(), right.end(), [](char a, char b) { return tolower(a) == tolower(b); }); } inline bool containsIgnoreCase(const std::string &a, const std::string &b) { auto iter = std::search(a.begin(), a.end(), b.begin(), b.end(), [](char ch1, char ch2) { return std::toupper(ch1) == std::toupper(ch2); }); return iter != a.end(); } template T get_or(const std::variant &variant, T alt) { const T *value = std::get_if(&variant); if (value == nullptr) return alt; else return *value; } template T alignTo(T value, T alignment) { T remainder = value % alignment; return remainder != 0 ? value + (alignment - remainder) : value; } bool isProcessElevated(); std::optional getEnvironmentVariable(const std::string &env); namespace scope_guard { #define SCOPE_GUARD ::hex::scope_guard::ScopeGuardOnExit() + [&]() #define ON_SCOPE_EXIT [[maybe_unused]] auto ANONYMOUS_VARIABLE(SCOPE_EXIT_) = SCOPE_GUARD template class ScopeGuard { private: F m_func; bool m_active; public: explicit constexpr ScopeGuard(F func) : m_func(std::move(func)), m_active(true) { } ~ScopeGuard() { if (this->m_active) { this->m_func(); } } void release() { this->m_active = false; } ScopeGuard(ScopeGuard &&other) noexcept : m_func(std::move(other.m_func)), m_active(other.m_active) { other.cancel(); } ScopeGuard &operator=(ScopeGuard &&) = delete; }; enum class ScopeGuardOnExit { }; template constexpr ScopeGuard operator+(ScopeGuardOnExit, F &&f) { return ScopeGuard(std::forward(f)); } } namespace first_time_exec { #define FIRST_TIME [[maybe_unused]] static auto ANONYMOUS_VARIABLE(FIRST_TIME_) = ::hex::first_time_exec::FirstTimeExecutor() + [&]() template class FirstTimeExecute { public: explicit constexpr FirstTimeExecute(F func) { func(); } FirstTimeExecute &operator=(FirstTimeExecute &&) = delete; }; enum class FirstTimeExecutor { }; template constexpr FirstTimeExecute operator+(FirstTimeExecutor, F &&f) { return FirstTimeExecute(std::forward(f)); } } namespace final_cleanup { #define FINAL_CLEANUP [[maybe_unused]] static auto ANONYMOUS_VARIABLE(ON_EXIT_) = ::hex::final_cleanup::FinalCleanupExecutor() + [&]() template class FinalCleanupExecute { F m_func; public: explicit constexpr FinalCleanupExecute(F func) : m_func(func) { } constexpr ~FinalCleanupExecute() { this->m_func(); } FinalCleanupExecute &operator=(FinalCleanupExecute &&) = delete; }; enum class FinalCleanupExecutor { }; template constexpr FinalCleanupExecute operator+(FinalCleanupExecutor, F &&f) { return FinalCleanupExecute(std::forward(f)); } } }