#include "lang/evaluator.hpp" #include "lang/token.hpp" #include "helpers/utils.hpp" #include #include #include namespace hex::lang { Evaluator::Evaluator(prv::Provider* &provider, std::endian defaultDataEndian) : m_provider(provider), m_defaultDataEndian(defaultDataEndian) { this->addFunction("findSequence", Function::MoreParametersThan | 1, [this](auto params) { return this->findSequence(params); }); this->addFunction("readUnsigned", 2, [this](auto params) { return this->readUnsigned(params); }); this->addFunction("readSigned", 2, [this](auto params) { return this->readSigned(params); }); } ASTNodeIntegerLiteral* Evaluator::evaluateScopeResolution(ASTNodeScopeResolution *node) { ASTNode *currScope = nullptr; for (const auto &identifier : node->getPath()) { if (currScope == nullptr) { if (!this->m_types.contains(identifier)) break; currScope = this->m_types[identifier.data()]; } else if (auto enumNode = dynamic_cast(currScope); enumNode != nullptr) { if (!enumNode->getEntries().contains(identifier)) break; else return evaluateMathematicalExpression(static_cast(enumNode->getEntries().at(identifier))); } } throwEvaluateError("failed to find identifier", node->getLineNumber()); } ASTNodeIntegerLiteral* Evaluator::evaluateRValue(ASTNodeRValue *node) { if (this->m_currMembers.empty()) throwEvaluateError("no variables available", node->getLineNumber()); const std::vector* currMembers = this->m_currMembers.back(); PatternData *currPattern = nullptr; for (const auto &identifier : node->getPath()) { if (auto structPattern = dynamic_cast(currPattern); structPattern != nullptr) currMembers = &structPattern->getMembers(); else if (auto unionPattern = dynamic_cast(currPattern); unionPattern != nullptr) currMembers = &unionPattern->getMembers(); else if (currPattern != nullptr) throwEvaluateError("tried to access member of a non-struct/union type", node->getLineNumber()); auto candidate = std::find_if(currMembers->begin(), currMembers->end(), [&](auto member) { return member->getVariableName() == identifier; }); if (candidate != currMembers->end()) currPattern = *candidate; else throwEvaluateError(hex::format("could not find identifier '%s'", identifier.c_str()), node->getLineNumber()); } if (auto unsignedPattern = dynamic_cast(currPattern); unsignedPattern != nullptr) { u8 value[unsignedPattern->getSize()]; this->m_provider->read(unsignedPattern->getOffset(), value, unsignedPattern->getSize()); switch (unsignedPattern->getSize()) { case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned8Bit, hex::changeEndianess(*reinterpret_cast(value), 1, this->getCurrentEndian()) }); case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned16Bit, hex::changeEndianess(*reinterpret_cast(value), 2, this->getCurrentEndian()) }); case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned32Bit, hex::changeEndianess(*reinterpret_cast(value), 4, this->getCurrentEndian()) }); case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned64Bit, hex::changeEndianess(*reinterpret_cast(value), 8, this->getCurrentEndian()) }); case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned128Bit, hex::changeEndianess(*reinterpret_cast(value), 16, this->getCurrentEndian()) }); default: throwEvaluateError("invalid rvalue size", node->getLineNumber()); } } else if (auto signedPattern = dynamic_cast(currPattern); signedPattern != nullptr) { u8 value[unsignedPattern->getSize()]; this->m_provider->read(signedPattern->getOffset(), value, signedPattern->getSize()); switch (unsignedPattern->getSize()) { case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed8Bit, hex::changeEndianess(*reinterpret_cast(value), 1, this->getCurrentEndian()) }); case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed16Bit, hex::changeEndianess(*reinterpret_cast(value), 2, this->getCurrentEndian()) }); case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed32Bit, hex::changeEndianess(*reinterpret_cast(value), 4, this->getCurrentEndian()) }); case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed64Bit, hex::changeEndianess(*reinterpret_cast(value), 8, this->getCurrentEndian()) }); case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Signed128Bit, hex::changeEndianess(*reinterpret_cast(value), 16, this->getCurrentEndian()) }); default: throwEvaluateError("invalid rvalue size", node->getLineNumber()); } } else if (auto enumPattern = dynamic_cast(currPattern); enumPattern != nullptr) { u8 value[enumPattern->getSize()]; this->m_provider->read(enumPattern->getOffset(), value, enumPattern->getSize()); switch (enumPattern->getSize()) { case 1: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned8Bit, hex::changeEndianess(*reinterpret_cast(value), 1, this->getCurrentEndian()) }); case 2: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned16Bit, hex::changeEndianess(*reinterpret_cast(value), 2, this->getCurrentEndian()) }); case 4: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned32Bit, hex::changeEndianess(*reinterpret_cast(value), 4, this->getCurrentEndian()) }); case 8: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned64Bit, hex::changeEndianess(*reinterpret_cast(value), 8, this->getCurrentEndian()) }); case 16: return new ASTNodeIntegerLiteral({ Token::ValueType::Unsigned128Bit, hex::changeEndianess(*reinterpret_cast(value), 16, this->getCurrentEndian()) }); default: throwEvaluateError("invalid rvalue size", node->getLineNumber()); } } else throwEvaluateError("tried to use non-integer value in numeric expression", node->getLineNumber()); } ASTNodeIntegerLiteral* Evaluator::evaluateFunctionCall(ASTNodeFunctionCall *node) { std::vector evaluatedParams; ScopeExit paramCleanup([&] { for (auto ¶m : evaluatedParams) delete param; }); for (auto ¶m : node->getParams()) evaluatedParams.push_back(this->evaluateMathematicalExpression(static_cast(param))); if (!this->m_functions.contains(node->getFunctionName().data())) throwEvaluateError(hex::format("no function named '%s' found", node->getFunctionName().data()), node->getLineNumber()); auto &function = this->m_functions[node->getFunctionName().data()]; if (function.parameterCount == Function::UnlimitedParameters) { ; // Don't check parameter count } else if (function.parameterCount & Function::LessParametersThan) { if (evaluatedParams.size() >= (function.parameterCount & ~Function::LessParametersThan)) throwEvaluateError(hex::format("too many parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount & ~Function::LessParametersThan), node->getLineNumber()); } else if (function.parameterCount & Function::MoreParametersThan) { if (evaluatedParams.size() <= (function.parameterCount & ~Function::MoreParametersThan)) throwEvaluateError(hex::format("too few parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount & ~Function::MoreParametersThan), node->getLineNumber()); } else if (function.parameterCount != evaluatedParams.size()) { throwEvaluateError(hex::format("invalid number of parameters for function '%s'. Expected %d", node->getFunctionName().data(), function.parameterCount), node->getLineNumber()); } return function.func(evaluatedParams); } #define FLOAT_BIT_OPERATION(name) \ auto name(hex::floating_point auto left, auto right) { throw std::runtime_error(""); return 0; } \ auto name(auto left, hex::floating_point auto right) { throw std::runtime_error(""); return 0; } \ auto name(hex::floating_point auto left, hex::floating_point auto right) { throw std::runtime_error(""); return 0; } \ auto name(hex::integral auto left, hex::integral auto right) namespace { FLOAT_BIT_OPERATION(shiftLeft) { return left << right; } FLOAT_BIT_OPERATION(shiftRight) { return left >> right; } FLOAT_BIT_OPERATION(bitAnd) { return left & right; } FLOAT_BIT_OPERATION(bitOr) { return left | right; } FLOAT_BIT_OPERATION(bitXor) { return left ^ right; } FLOAT_BIT_OPERATION(bitNot) { return ~right; } } ASTNodeIntegerLiteral* Evaluator::evaluateOperator(ASTNodeIntegerLiteral *left, ASTNodeIntegerLiteral *right, Token::Operator op) { auto newType = [&] { #define CHECK_TYPE(type) if (left->getType() == (type) || right->getType() == (type)) return (type) #define DEFAULT_TYPE(type) return (type) CHECK_TYPE(Token::ValueType::Double); CHECK_TYPE(Token::ValueType::Float); CHECK_TYPE(Token::ValueType::Unsigned128Bit); CHECK_TYPE(Token::ValueType::Signed128Bit); CHECK_TYPE(Token::ValueType::Unsigned64Bit); CHECK_TYPE(Token::ValueType::Signed64Bit); CHECK_TYPE(Token::ValueType::Unsigned32Bit); CHECK_TYPE(Token::ValueType::Signed32Bit); CHECK_TYPE(Token::ValueType::Unsigned16Bit); CHECK_TYPE(Token::ValueType::Signed16Bit); CHECK_TYPE(Token::ValueType::Unsigned8Bit); CHECK_TYPE(Token::ValueType::Signed8Bit); CHECK_TYPE(Token::ValueType::Character); DEFAULT_TYPE(Token::ValueType::Signed32Bit); #undef CHECK_TYPE #undef DEFAULT_TYPE }(); try { return std::visit([&](auto &&leftValue, auto &&rightValue) -> ASTNodeIntegerLiteral * { switch (op) { case Token::Operator::Plus: return new ASTNodeIntegerLiteral({ newType, leftValue + rightValue }); case Token::Operator::Minus: return new ASTNodeIntegerLiteral({ newType, leftValue - rightValue }); case Token::Operator::Star: return new ASTNodeIntegerLiteral({ newType, leftValue * rightValue }); case Token::Operator::Slash: return new ASTNodeIntegerLiteral({ newType, leftValue / rightValue }); case Token::Operator::ShiftLeft: return new ASTNodeIntegerLiteral({ newType, shiftLeft(leftValue, rightValue) }); case Token::Operator::ShiftRight: return new ASTNodeIntegerLiteral({ newType, shiftRight(leftValue, rightValue) }); case Token::Operator::BitAnd: return new ASTNodeIntegerLiteral({ newType, bitAnd(leftValue, rightValue) }); case Token::Operator::BitXor: return new ASTNodeIntegerLiteral({ newType, bitXor(leftValue, rightValue) }); case Token::Operator::BitOr: return new ASTNodeIntegerLiteral({ newType, bitOr(leftValue, rightValue) }); case Token::Operator::BitNot: return new ASTNodeIntegerLiteral({ newType, bitNot(leftValue, rightValue) }); case Token::Operator::BoolEquals: return new ASTNodeIntegerLiteral({ newType, leftValue == rightValue }); case Token::Operator::BoolNotEquals: return new ASTNodeIntegerLiteral({ newType, leftValue != rightValue }); case Token::Operator::BoolGreaterThan: return new ASTNodeIntegerLiteral({ newType, leftValue > rightValue }); case Token::Operator::BoolLessThan: return new ASTNodeIntegerLiteral({ newType, leftValue < rightValue }); case Token::Operator::BoolGreaterThanOrEquals: return new ASTNodeIntegerLiteral({ newType, leftValue >= rightValue }); case Token::Operator::BoolLessThanOrEquals: return new ASTNodeIntegerLiteral({ newType, leftValue <= rightValue }); case Token::Operator::BoolAnd: return new ASTNodeIntegerLiteral({ newType, leftValue && rightValue }); case Token::Operator::BoolXor: return new ASTNodeIntegerLiteral({ newType, leftValue && !rightValue || !leftValue && rightValue }); case Token::Operator::BoolOr: return new ASTNodeIntegerLiteral({ newType, leftValue || rightValue }); case Token::Operator::BoolNot: return new ASTNodeIntegerLiteral({ newType, !rightValue }); default: throwEvaluateError("invalid operator used in mathematical expression", left->getLineNumber()); } }, left->getValue(), right->getValue()); } catch (std::runtime_error &e) { throwEvaluateError("bitwise operations on floating point numbers are forbidden", left->getLineNumber()); } } ASTNodeIntegerLiteral* Evaluator::evaluateOperand(ASTNode *node) { if (auto exprLiteral = dynamic_cast(node); exprLiteral != nullptr) return exprLiteral; else if (auto exprExpression = dynamic_cast(node); exprExpression != nullptr) return evaluateMathematicalExpression(exprExpression); else if (auto exprRvalue = dynamic_cast(node); exprRvalue != nullptr) return evaluateRValue(exprRvalue); else if (auto exprScopeResolution = dynamic_cast(node); exprScopeResolution != nullptr) return evaluateScopeResolution(exprScopeResolution); else if (auto exprTernary = dynamic_cast(node); exprTernary != nullptr) return evaluateTernaryExpression(exprTernary); else if (auto exprFunctionCall = dynamic_cast(node); exprFunctionCall != nullptr) return evaluateFunctionCall(exprFunctionCall); else throwEvaluateError("invalid operand", node->getLineNumber()); } ASTNodeIntegerLiteral* Evaluator::evaluateTernaryExpression(ASTNodeTernaryExpression *node) { switch (node->getOperator()) { case Token::Operator::TernaryConditional: { auto condition = this->evaluateOperand(node->getFirstOperand()); SCOPE_EXIT( delete condition; ); if (std::visit([](auto &&value){ return value != 0; }, condition->getValue())) return this->evaluateOperand(node->getSecondOperand()); else return this->evaluateOperand(node->getThirdOperand()); } default: throwEvaluateError("invalid operator used in ternary expression", node->getLineNumber()); } } ASTNodeIntegerLiteral* Evaluator::evaluateMathematicalExpression(ASTNodeNumericExpression *node) { auto leftInteger = this->evaluateOperand(node->getLeftOperand()); auto rightInteger = this->evaluateOperand(node->getRightOperand()); return evaluateOperator(leftInteger, rightInteger, node->getOperator()); } PatternData* Evaluator::evaluateBuiltinType(ASTNodeBuiltinType *node) { auto &type = node->getType(); auto typeSize = Token::getTypeSize(type); PatternData *pattern; if (type == Token::ValueType::Character) pattern = new PatternDataCharacter(this->m_currOffset); else if (type == Token::ValueType::Boolean) pattern = new PatternDataBoolean(this->m_currOffset); else if (Token::isUnsigned(type)) pattern = new PatternDataUnsigned(this->m_currOffset, typeSize); else if (Token::isSigned(type)) pattern = new PatternDataSigned(this->m_currOffset, typeSize); else if (Token::isFloatingPoint(type)) pattern = new PatternDataFloat(this->m_currOffset, typeSize); else throwEvaluateError("invalid builtin type", node->getLineNumber()); this->m_currOffset += typeSize; pattern->setTypeName(Token::getTypeName(type)); return pattern; } std::vector Evaluator::evaluateMember(ASTNode *node) { this->m_currEndian.reset(); if (auto memberVariableNode = dynamic_cast(node); memberVariableNode != nullptr) return { this->evaluateVariable(memberVariableNode) }; else if (auto memberArrayNode = dynamic_cast(node); memberArrayNode != nullptr) return { this->evaluateArray(memberArrayNode) }; else if (auto memberPointerNode = dynamic_cast(node); memberPointerNode != nullptr) return { this->evaluatePointer(memberPointerNode) }; else if (auto conditionalNode = dynamic_cast(node); conditionalNode != nullptr) { auto condition = this->evaluateMathematicalExpression(static_cast(conditionalNode->getCondition())); std::vector patterns; if (std::visit([](auto &&value) { return value != 0; }, condition->getValue())) { for (auto &statement : conditionalNode->getTrueBody()) { auto statementPatterns = this->evaluateMember(statement); std::copy(statementPatterns.begin(), statementPatterns.end(), std::back_inserter(patterns)); } } else { for (auto &statement : conditionalNode->getFalseBody()) { auto statementPatterns = this->evaluateMember(statement); std::copy(statementPatterns.begin(), statementPatterns.end(), std::back_inserter(patterns)); } } delete condition; return patterns; } else throwEvaluateError("invalid struct member", node->getLineNumber()); } PatternData* Evaluator::evaluateStruct(ASTNodeStruct *node) { std::vector memberPatterns; this->m_currMembers.push_back(&memberPatterns); SCOPE_EXIT( this->m_currMembers.pop_back(); ); auto startOffset = this->m_currOffset; for (auto &member : node->getMembers()) { auto newMembers = this->evaluateMember(member); std::copy(newMembers.begin(), newMembers.end(), std::back_inserter(memberPatterns)); } return new PatternDataStruct(startOffset, this->m_currOffset - startOffset, memberPatterns); } PatternData* Evaluator::evaluateUnion(ASTNodeUnion *node) { std::vector memberPatterns; this->m_currMembers.push_back(&memberPatterns); SCOPE_EXIT( this->m_currMembers.pop_back(); ); auto startOffset = this->m_currOffset; for (auto &member : node->getMembers()) { auto newMembers = this->evaluateMember(member); std::copy(newMembers.begin(), newMembers.end(), std::back_inserter(memberPatterns)); this->m_currOffset = startOffset; } return new PatternDataUnion(startOffset, this->m_currOffset - startOffset, memberPatterns); } PatternData* Evaluator::evaluateEnum(ASTNodeEnum *node) { std::vector> entryPatterns; auto startOffset = this->m_currOffset; for (auto &[name, value] : node->getEntries()) { auto expression = dynamic_cast(value); if (expression == nullptr) throwEvaluateError("invalid expression in enum value", value->getLineNumber()); auto valueNode = evaluateMathematicalExpression(expression); SCOPE_EXIT( delete valueNode; ); entryPatterns.push_back({{ valueNode->getType(), valueNode->getValue() }, name }); } size_t size; if (auto underlyingType = dynamic_cast(node->getUnderlyingType()); underlyingType != nullptr) size = Token::getTypeSize(underlyingType->getType()); else throwEvaluateError("invalid enum underlying type", node->getLineNumber()); return new PatternDataEnum(startOffset, size, entryPatterns); } PatternData* Evaluator::evaluateBitfield(ASTNodeBitfield *node) { std::vector> entryPatterns; auto startOffset = this->m_currOffset; size_t bits = 0; for (auto &[name, value] : node->getEntries()) { auto expression = dynamic_cast(value); if (expression == nullptr) throwEvaluateError("invalid expression in bitfield field size", value->getLineNumber()); auto valueNode = evaluateMathematicalExpression(expression); SCOPE_EXIT( delete valueNode; ); auto fieldBits = std::visit([node, type = valueNode->getType()] (auto &&value) { if (Token::isFloatingPoint(type)) throwEvaluateError("bitfield entry size must be an integer value", node->getLineNumber()); return static_cast(value); }, valueNode->getValue()); if (fieldBits > 64 || fieldBits <= 0) throwEvaluateError("bitfield entry must occupy between 1 and 64 bits", value->getLineNumber()); bits += fieldBits; entryPatterns.emplace_back(name, fieldBits); } return new PatternDataBitfield(startOffset, (bits / 8) + 1, entryPatterns); } PatternData* Evaluator::evaluateType(ASTNodeTypeDecl *node) { auto type = node->getType(); if (!this->m_currEndian.has_value()) this->m_currEndian = node->getEndian(); PatternData *pattern; if (auto builtinTypeNode = dynamic_cast(type); builtinTypeNode != nullptr) return this->evaluateBuiltinType(builtinTypeNode); else if (auto typeDeclNode = dynamic_cast(type); typeDeclNode != nullptr) pattern = this->evaluateType(typeDeclNode); else if (auto structNode = dynamic_cast(type); structNode != nullptr) pattern = this->evaluateStruct(structNode); else if (auto unionNode = dynamic_cast(type); unionNode != nullptr) pattern = this->evaluateUnion(unionNode); else if (auto enumNode = dynamic_cast(type); enumNode != nullptr) pattern = this->evaluateEnum(enumNode); else if (auto bitfieldNode = dynamic_cast(type); bitfieldNode != nullptr) pattern = this->evaluateBitfield(bitfieldNode); else throwEvaluateError("type could not be evaluated", node->getLineNumber()); if (!node->getName().empty()) pattern->setTypeName(node->getName().data()); return pattern; } PatternData* Evaluator::evaluateVariable(ASTNodeVariableDecl *node) { if (auto offset = dynamic_cast(node->getPlacementOffset()); offset != nullptr) { auto valueNode = evaluateMathematicalExpression(offset); SCOPE_EXIT( delete valueNode; ); this->m_currOffset = std::visit([node, type = valueNode->getType()] (auto &&value) { if (Token::isFloatingPoint(type)) throwEvaluateError("placement offset must be an integer value", node->getLineNumber()); return static_cast(value); }, valueNode->getValue()); } if (this->m_currOffset >= this->m_provider->getActualSize()) throwEvaluateError("array exceeds size of file", node->getLineNumber()); PatternData *pattern; if (auto typeDecl = dynamic_cast(node->getType()); typeDecl != nullptr) pattern = this->evaluateType(typeDecl); else if (auto builtinTypeDecl = dynamic_cast(node->getType()); builtinTypeDecl != nullptr) pattern = this->evaluateBuiltinType(builtinTypeDecl); else throwEvaluateError("ASTNodeVariableDecl had an invalid type. This is a bug!", 1); pattern->setVariableName(node->getName().data()); pattern->setEndian(this->getCurrentEndian()); this->m_currEndian.reset(); return pattern; } PatternData* Evaluator::evaluateArray(ASTNodeArrayVariableDecl *node) { if (auto offset = dynamic_cast(node->getPlacementOffset()); offset != nullptr) { auto valueNode = evaluateMathematicalExpression(offset); SCOPE_EXIT( delete valueNode; ); this->m_currOffset = std::visit([node, type = valueNode->getType()] (auto &&value) { if (Token::isFloatingPoint(type)) throwEvaluateError("placement offset must be an integer value", node->getLineNumber()); return static_cast(value); }, valueNode->getValue()); } auto startOffset = this->m_currOffset; ASTNodeIntegerLiteral *valueNode; if (auto sizeNumericExpression = dynamic_cast(node->getSize()); sizeNumericExpression != nullptr) valueNode = evaluateMathematicalExpression(sizeNumericExpression); else throwEvaluateError("array size not a numeric expression", node->getLineNumber()); SCOPE_EXIT( delete valueNode; ); auto arraySize = std::visit([node, type = valueNode->getType()] (auto &&value) { if (Token::isFloatingPoint(type)) throwEvaluateError("array size must be an integer value", node->getLineNumber()); return static_cast(value); }, valueNode->getValue()); if (auto typeDecl = dynamic_cast(node->getType()); typeDecl != nullptr) { if (auto builtinType = dynamic_cast(typeDecl->getType()); builtinType != nullptr) { if (builtinType->getType() == Token::ValueType::Padding) { this->m_currOffset += arraySize; return new PatternDataPadding(startOffset, arraySize); } } } std::vector entries; std::optional color; for (s128 i = 0; i < arraySize; i++) { PatternData *entry; if (auto typeDecl = dynamic_cast(node->getType()); typeDecl != nullptr) entry = this->evaluateType(typeDecl); else if (auto builtinTypeDecl = dynamic_cast(node->getType()); builtinTypeDecl != nullptr) { entry = this->evaluateBuiltinType(builtinTypeDecl); } else throwEvaluateError("ASTNodeVariableDecl had an invalid type. This is a bug!", 1); entry->setVariableName(hex::format("[%llu]", (u64)i)); entry->setEndian(this->getCurrentEndian()); if (!color.has_value()) color = entry->getColor(); entry->setColor(color.value_or(0)); entries.push_back(entry); if (this->m_currOffset >= this->m_provider->getActualSize()) throwEvaluateError("array exceeds size of file", node->getLineNumber()); } this->m_currEndian.reset(); PatternData *pattern; if (entries.empty()) pattern = new PatternDataPadding(startOffset, 0); else if (dynamic_cast(entries[0])) pattern = new PatternDataString(startOffset, (this->m_currOffset - startOffset), color.value_or(0)); else pattern = new PatternDataArray(startOffset, (this->m_currOffset - startOffset), entries, color.value_or(0)); pattern->setVariableName(node->getName().data()); return pattern; } PatternData* Evaluator::evaluatePointer(ASTNodePointerVariableDecl *node) { s128 pointerOffset; if (auto offset = dynamic_cast(node->getPlacementOffset()); offset != nullptr) { auto valueNode = evaluateMathematicalExpression(offset); SCOPE_EXIT( delete valueNode; ); pointerOffset = std::visit([node, type = valueNode->getType()] (auto &&value) { if (Token::isFloatingPoint(type)) throwEvaluateError("pointer offset must be an integer value", node->getLineNumber()); return static_cast(value); }, valueNode->getValue()); this->m_currOffset = pointerOffset; } else { pointerOffset = this->m_currOffset; } PatternData *sizeType; if (auto builtinTypeNode = dynamic_cast(node->getSizeType()); builtinTypeNode != nullptr) { sizeType = evaluateBuiltinType(builtinTypeNode); } else throwEvaluateError("Pointer size is not a builtin type", node->getLineNumber()); size_t pointerSize = sizeType->getSize(); delete sizeType; u128 pointedAtOffset = 0; this->m_provider->read(pointerOffset, &pointedAtOffset, pointerSize); this->m_currOffset = pointedAtOffset; auto pointedAt = evaluateType(dynamic_cast(node->getType())); this->m_currOffset = pointerOffset + pointerSize; return new PatternDataPointer(pointerOffset, pointerSize, pointedAt); } std::optional> Evaluator::evaluate(const std::vector &ast) { std::vector patterns; try { for (const auto& node : ast) { this->m_currEndian.reset(); if (auto variableDeclNode = dynamic_cast(node); variableDeclNode != nullptr) { patterns.push_back(this->evaluateVariable(variableDeclNode)); } else if (auto arrayDeclNode = dynamic_cast(node); arrayDeclNode != nullptr) { patterns.push_back(this->evaluateArray(arrayDeclNode)); } else if (auto pointerDeclNode = dynamic_cast(node); pointerDeclNode != nullptr) { patterns.push_back(this->evaluatePointer(pointerDeclNode)); } else if (auto typeDeclNode = dynamic_cast(node); typeDeclNode != nullptr) { this->m_types[typeDeclNode->getName().data()] = typeDeclNode->getType(); } } } catch (EvaluateError &e) { this->m_error = e; return { }; } return patterns; } }