#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if MBEDTLS_VERSION_MAJOR <= 2 #define mbedtls_md5_starts mbedtls_md5_starts_ret #define mbedtls_md5_update mbedtls_md5_update_ret #define mbedtls_md5_finish mbedtls_md5_finish_ret #define mbedtls_sha1_starts mbedtls_sha1_starts_ret #define mbedtls_sha1_update mbedtls_sha1_update_ret #define mbedtls_sha1_finish mbedtls_sha1_finish_ret #define mbedtls_sha256_starts mbedtls_sha256_starts_ret #define mbedtls_sha256_update mbedtls_sha256_update_ret #define mbedtls_sha256_finish mbedtls_sha256_finish_ret #define mbedtls_sha512_starts mbedtls_sha512_starts_ret #define mbedtls_sha512_update mbedtls_sha512_update_ret #define mbedtls_sha512_finish mbedtls_sha512_finish_ret #endif namespace hex::crypt { using namespace std::placeholders; template Func> void processDataByChunks(prv::Provider* data, u64 offset, size_t size, Func func) { std::array buffer = { 0 }; for (size_t bufferOffset = 0; bufferOffset < size; bufferOffset += buffer.size()) { const auto readSize = std::min(buffer.size(), size - bufferOffset); data->read(offset + bufferOffset, buffer.data(), readSize); func(buffer.data(), readSize); } } template T reflect(T in, std::size_t bits) { T out{}; for(std::size_t i = 0; i < bits; i++) { out <<= 1; if (in & 0b1) out |= 1; in >>= 1; } return out; } template T reflect(T in) { if constexpr (sizeof(T) == 1) { T out{in}; out = ((out & 0xf0u) >> 4) | ((out & 0x0fu) << 4); out = ((out & 0xccu) >> 2) | ((out & 0x33u) << 2); out = ((out & 0xaau) >> 1) | ((out & 0x55u) << 1); return out; } else { return reflect(in, sizeof(T) *8 ); } } class Crc { // use reflected algorithm, so we reflect only if refin / refout is FALSE // mask values, 0b1 << 64 is UB, so use 0b10 << 63 public: using calc_type = uint64_t; Crc(int bits, calc_type polynomial, calc_type init, calc_type xorout, bool refin, bool refout) : m_bits(bits), m_init(init & ((0b10ull << (bits-1)) - 1)), m_xorout(xorout & ((0b10ull << (bits-1)) - 1)), m_refin(refin), m_refout(refout), table([polynomial, bits](){ auto reflectedpoly= reflect(polynomial & ((0b10ull << (bits-1)) - 1), bits); std::array table = {0}; for (uint32_t i = 0; i < 256; i++) { uint64_t c = i; for (std::size_t j = 0; j < 8; j++) { if (c & 0b1) c = reflectedpoly ^ (c >> 1); else c >>= 1; } table[i] = c; } return table; }()) { reset(); }; void reset() { c = reflect(m_init, m_bits); } void processBytes(const unsigned char *data, std::size_t size) { for (std::size_t i = 0; i < size; i++) { unsigned char d; if (m_refin) d = data[i]; else d = reflect(data[i]); c = table[(c ^ d) & 0xFFL] ^ (c >> 8); } } calc_type checksum() const { if (m_refout) return c ^ m_xorout; else return reflect(c, m_bits) ^ m_xorout; } private: const int m_bits; const calc_type m_init; const calc_type m_xorout; const bool m_refin; const bool m_refout; const std::array table; calc_type c; }; template auto calcCrc(prv::Provider* data, u64 offset, std::size_t size, u32 polynomial, u32 init, u32 xorout, bool reflectIn, bool reflectOut) { Crc crc(bits, polynomial, init, xorout, reflectIn, reflectOut); processDataByChunks(data, offset, size, std::bind(&Crc::processBytes, &crc, _1, _2)); return crc.checksum(); } u16 crc8(prv::Provider* &data, u64 offset, size_t size, u32 polynomial, u32 init, u32 xorout, bool reflectIn, bool reflectOut) { return calcCrc<8>(data, offset, size, polynomial, init, xorout, reflectIn, reflectOut); } u16 crc16(prv::Provider* &data, u64 offset, size_t size, u32 polynomial, u32 init, u32 xorout, bool reflectIn, bool reflectOut) { return calcCrc<16>(data, offset, size, polynomial, init, xorout, reflectIn, reflectOut); } u32 crc32(prv::Provider* &data, u64 offset, size_t size, u32 polynomial, u32 init, u32 xorout, bool reflectIn, bool reflectOut) { return calcCrc<32>(data, offset, size, polynomial, init, xorout, reflectIn, reflectOut); } std::array md5(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_md5_context ctx; mbedtls_md5_init(&ctx); mbedtls_md5_starts(&ctx); processDataByChunks(data, offset, size, std::bind(mbedtls_md5_update, &ctx, _1, _2)); mbedtls_md5_finish(&ctx, result.data()); mbedtls_md5_free(&ctx); return result; } std::array md5(const std::vector &data) { std::array result = { 0 }; mbedtls_md5_context ctx; mbedtls_md5_init(&ctx); mbedtls_md5_starts(&ctx); mbedtls_md5_update(&ctx, data.data(), data.size()); mbedtls_md5_finish(&ctx, result.data()); mbedtls_md5_free(&ctx); return result; } std::array sha1(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_sha1_context ctx; mbedtls_sha1_init(&ctx); mbedtls_sha1_starts(&ctx); processDataByChunks(data, offset, size, std::bind(mbedtls_sha1_update, &ctx, _1, _2)); mbedtls_sha1_finish(&ctx, result.data()); mbedtls_sha1_free(&ctx); return result; } std::array sha1(const std::vector &data) { std::array result = { 0 }; mbedtls_sha1_context ctx; mbedtls_sha1_init(&ctx); mbedtls_sha1_starts(&ctx); mbedtls_sha1_update(&ctx, data.data(), data.size()); mbedtls_sha1_finish(&ctx, result.data()); mbedtls_sha1_free(&ctx); return result; } std::array sha224(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_sha256_context ctx; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, true); processDataByChunks(data, offset, size, std::bind(mbedtls_sha256_update, &ctx, _1, _2)); mbedtls_sha256_finish(&ctx, result.data()); mbedtls_sha256_free(&ctx); return result; } std::array sha224(const std::vector &data) { std::array result = { 0 }; mbedtls_sha256_context ctx; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, true); mbedtls_sha256_update(&ctx, data.data(), data.size()); mbedtls_sha256_finish(&ctx, result.data()); mbedtls_sha256_free(&ctx); return result; } std::array sha256(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_sha256_context ctx; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, false); processDataByChunks(data, offset, size, std::bind(mbedtls_sha256_update, &ctx, _1, _2)); mbedtls_sha256_finish(&ctx, result.data()); mbedtls_sha256_free(&ctx); return result; } std::array sha256(const std::vector &data) { std::array result = { 0 }; mbedtls_sha256_context ctx; mbedtls_sha256_init(&ctx); mbedtls_sha256_starts(&ctx, false); mbedtls_sha256_update(&ctx, data.data(), data.size()); mbedtls_sha256_finish(&ctx, result.data()); mbedtls_sha256_free(&ctx); return result; } std::array sha384(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_sha512_context ctx; mbedtls_sha512_init(&ctx); mbedtls_sha512_starts(&ctx, true); processDataByChunks(data, offset, size, std::bind(mbedtls_sha512_update, &ctx, _1, _2)); mbedtls_sha512_finish(&ctx, result.data()); mbedtls_sha512_free(&ctx); return result; } std::array sha384(const std::vector &data) { std::array result = { 0 }; mbedtls_sha512_context ctx; mbedtls_sha512_init(&ctx); mbedtls_sha512_starts(&ctx, true); mbedtls_sha512_update(&ctx, data.data(), data.size()); mbedtls_sha512_finish(&ctx, result.data()); mbedtls_sha512_free(&ctx); return result; } std::array sha512(prv::Provider* &data, u64 offset, size_t size) { std::array result = { 0 }; mbedtls_sha512_context ctx; mbedtls_sha512_init(&ctx); mbedtls_sha512_starts(&ctx, false); processDataByChunks(data, offset, size, std::bind(mbedtls_sha512_update, &ctx, _1, _2)); mbedtls_sha512_finish(&ctx, result.data()); mbedtls_sha512_free(&ctx); return result; } std::array sha512(const std::vector &data) { std::array result = { 0 }; mbedtls_sha512_context ctx; mbedtls_sha512_init(&ctx); mbedtls_sha512_starts(&ctx, false); mbedtls_sha512_update(&ctx, data.data(), data.size()); mbedtls_sha512_finish(&ctx, result.data()); mbedtls_sha512_free(&ctx); return result; } std::vector decode64(const std::vector &input) { size_t outputSize = (3 * input.size()) / 4; std::vector output(outputSize + 1, 0x00); size_t written = 0; if (mbedtls_base64_decode(output.data(), output.size(), &written, reinterpret_cast(input.data()), input.size())) return { }; return output; } std::vector encode64(const std::vector &input) { size_t outputSize = 4 * ((input.size() + 2) / 3); std::vector output(outputSize + 1, 0x00); size_t written = 0; if (mbedtls_base64_encode(output.data(), output.size(), &written, reinterpret_cast(input.data()), input.size())) return { }; return output; } std::vector decode16(const std::string &input) { std::vector output(input.length() / 2, 0x00); mbedtls_mpi ctx; mbedtls_mpi_init(&ctx); ON_SCOPE_EXIT { mbedtls_mpi_free(&ctx); }; if (mbedtls_mpi_read_string(&ctx, 16, input.c_str())) return { }; if (mbedtls_mpi_write_binary(&ctx, output.data(), output.size())) return { }; return output; } std::string encode16(const std::vector &input) { std::string output(input.size() * 2 + 1, 0x00); mbedtls_mpi ctx; mbedtls_mpi_init(&ctx); ON_SCOPE_EXIT { mbedtls_mpi_free(&ctx); }; if (mbedtls_mpi_read_binary(&ctx, input.data(), input.size())) return { }; size_t written = 0; if (mbedtls_mpi_write_string(&ctx, 16, output.data(), output.size(), &written)) return { }; return output; } static std::vector aes(mbedtls_cipher_type_t type, mbedtls_operation_t operation, const std::vector &key, std::array nonce, std::array iv, const std::vector &input) { std::vector output; if (input.empty()) return { }; mbedtls_cipher_context_t ctx; auto cipherInfo = mbedtls_cipher_info_from_type(type); mbedtls_cipher_setup(&ctx, cipherInfo); mbedtls_cipher_setkey(&ctx, key.data(), key.size() * 8, operation); std::array nonceCounter = { 0 }; std::copy(nonce.begin(), nonce.end(), nonceCounter.begin()); std::copy(iv.begin(), iv.end(), nonceCounter.begin() + 8); size_t outputSize = input.size() + mbedtls_cipher_get_block_size(&ctx); output.resize(outputSize, 0x00); mbedtls_cipher_crypt(&ctx, nonceCounter.data(), nonceCounter.size(), input.data(), input.size(), output.data(), &outputSize); mbedtls_cipher_free(&ctx); output.resize(input.size()); return output; } std::vector aesDecrypt(AESMode mode, KeyLength keyLength, const std::vector &key, std::array nonce, std::array iv, const std::vector &input) { switch (keyLength) { case KeyLength::Key128Bits: if (key.size() != 128 / 8) return { }; break; case KeyLength::Key192Bits: if (key.size() != 192 / 8) return { }; break; case KeyLength::Key256Bits: if (key.size() != 256 / 8) return { }; break; default: return { }; } mbedtls_cipher_type_t type; switch (mode) { case AESMode::ECB: type = MBEDTLS_CIPHER_AES_128_ECB; break; case AESMode::CBC: type = MBEDTLS_CIPHER_AES_128_CBC; break; case AESMode::CFB128: type = MBEDTLS_CIPHER_AES_128_CFB128; break; case AESMode::CTR: type = MBEDTLS_CIPHER_AES_128_CTR; break; case AESMode::GCM: type = MBEDTLS_CIPHER_AES_128_GCM; break; case AESMode::CCM: type = MBEDTLS_CIPHER_AES_128_CCM; break; case AESMode::OFB: type = MBEDTLS_CIPHER_AES_128_OFB; break; case AESMode::XTS: type = MBEDTLS_CIPHER_AES_128_XTS; break; default: return { }; } type = mbedtls_cipher_type_t(type + u8(keyLength)); return aes(type, MBEDTLS_DECRYPT, key, nonce, iv, input); } }