#pragma once #include #include #include #include #include #include #include #include #include #include "imgui.h" namespace hex::gl { namespace impl { template GLuint getType() { if constexpr (std::is_same_v) return GL_FLOAT; else if constexpr (std::is_same_v) return GL_UNSIGNED_BYTE; else if constexpr (std::is_same_v) return GL_UNSIGNED_SHORT; else if constexpr (std::is_same_v) return GL_UNSIGNED_INT; else { static_assert(hex::always_false::value, "Unsupported type"); return 0; } } } template class Vector { public: Vector() = default; Vector(const T val) { for (size_t i = 0; i < Size; i++) this->m_data[i] = val; } Vector(std::array data) : m_data(data) { } Vector(Vector &&other) noexcept : m_data(std::move(other.m_data)) { } Vector(const Vector &other) : m_data(other.m_data) { } T &operator[](size_t index) { return this->m_data[index]; } const T &operator[](size_t index) const { return this->m_data[index]; } std::array &asArray() { return this->m_data; } T *data() { return this->m_data.data(); } const T *data() const { return this->m_data.data(); } [[nodiscard]] size_t size() const { return this->m_data.size(); } auto operator=(const Vector& other) { for (size_t i = 0; i < Size; i++) this->m_data[i] = other[i]; return *this; } auto operator+=(const Vector& other) { for (size_t i = 0; i < Size; i++) this->m_data[i] += other.m_data[i]; return *this; } auto operator+=(const T scalar) { for (size_t i = 0; i < Size; i++) this->m_data[i] += scalar; return *this; } auto operator-=(Vector other) { for (size_t i = 0; i < Size; i++) this->m_data[i] -= other.m_data[i]; return *this; } auto operator-=(const T scalar) { for (size_t i = 0; i < Size; i++) this->m_data[i] -= scalar; return *this; } Vector operator*=(const T scalar) { for (size_t i = 0; i < Size; i++) this->m_data[i] *= scalar; return *this; } auto operator*(const T scalar) { auto copy = *this; for (size_t i = 0; i < Size; i++) copy[i] *= scalar; return copy; } auto operator+(const Vector& other) { auto copy = *this; for (size_t i = 0; i < Size; i++) copy[i] += other[i]; return copy; } auto operator-(const Vector& other) { auto copy = *this; for (size_t i = 0; i < Size; i++) copy[i] -= other[i]; return copy; } auto dot(const Vector& other) { T result = 0; for (size_t i = 0; i < Size; i++) result += this->m_data[i] * other[i]; return result; } auto cross(const Vector& other) { static_assert(Size == 3, "Cross product is only defined for 3D vectors"); return Vector({this->m_data[1] * other[2] - this->m_data[2] * other[1], this->m_data[2] * other[0] - this->m_data[0] * other[2], this->m_data[0] * other[1] - this->m_data[1] * other[0]}); } auto magnitude() { return std::sqrt(this->dot(*this)); } auto normalize() { auto copy = *this; auto length = copy.magnitude(); for (size_t i = 0; i < Size; i++) copy[i] /= length; return copy; } auto operator==(const Vector& other) { for (size_t i = 0; i < Size; i++) if (this->m_data[i] != other[i]) return false; return true; } private: std::array m_data; }; template class Matrix { public: Matrix(const T &init) { for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) mat[i * Columns + j] = init; } Matrix(const Matrix &A) { mat = A.mat; } virtual ~Matrix() {} size_t getRows() const { return Rows; } size_t getColumns() const { return Columns; } T *data() { return this->mat.data(); } const T *data() const { return this->mat.data(); } T &getElement(int row,int col) { return this->mat[row*Columns+col]; } Vector getColumn(int col) { Vector result; for (size_t i = 0; i < Rows; i++) result[i] = this->mat[i*Columns+col]; return result; } Vector getRow(int row) { Vector result; for (size_t i = 0; i < Columns; i++) result[i] = this->mat[row*Columns+i]; return result; } void updateRow(int row, Vector values) { for (size_t i = 0; i < Columns; i++) this->mat[row*Columns+i] = values[i]; } void updateColumn(int col, Vector values) { for (size_t i = 0; i < Rows; i++) this->mat[i*Columns+col] = values[i]; } void updateElement( int row,int col, T value) { this->mat[row*Columns + col] = value; } T &operator()( const int &row,const int &col) { return this->mat[row*Columns + col]; } const T &operator()(const unsigned& row,const unsigned& col ) const { return this->mat[row*Columns + col]; } Matrix& operator=(const Matrix& A) { if (&A == this) return *this; for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) mat[i*Columns+j] = A(i, j); return *this; } Matrix operator+(const Matrix& A) { Matrix result(0.0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) result(i, j) = this->mat[i*Columns+j] + A(i, j); return result; } Matrix operator-(const Matrix& A) { Matrix result(0.0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) result(i, j) = this->mat[i*Columns+j] - A(i, j); return result; } static Matrix identity() { Matrix I(0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) if(i == j) I.updateElement(i, j, 1); return I; } Matrix transpose() { Matrix t(0); for (size_t i = 0; i < Columns; i++) for (size_t j = 0; j < Rows; j++) t.updateElement(i, j, this->mat[j*Rows+i]); return t; } private: std::array mat; }; template Matrix operator*(const Matrix &A, const Matrix &B) { Matrix result(0.0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) for (size_t k = 0; k < OtherDimension; k++) result(i, j) += A(i,k) * B(k, j); return result; } template Matrix operator*(const Vector &a, const Vector &b) { Matrix result(0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) result.updateElement(i, j, a[i] * b[j]); return result; } template Vector operator*(const Matrix &A, const Vector &b) { Vector result(0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) result[i] += A(i, j) * b[j]; return result; } template Vector operator*(const Vector &b, const Matrix &A) { Vector result(0); for (size_t i = 0; i < Rows; i++) for (size_t j = 0; j < Columns; j++) result[j] += b[i] * A(i, j); return result; } // Convert horizontal (Xh) vertical (Yv) and spin (Zs) angles to a rotation matrix. // Xh: Horizontal rotation, also known as heading or yaw. // Yv: Vertical rotation, also known as pitch or elevation. // Zs: Spin rotation, also known as intrinsic rotation, roll or bank. // Each column of the rotation matrix represents left, up and forward axis. // Angles of rotation are lowercase (x,y,z) in radians and the rotation matrix is uppercase (X,Y,Z). // S = sin, C = cos // The order of rotation is Yaw->Pitch->Roll (Zs*Yv*Xh) // Zs Yv Xh // | Cz -Sz 0 0| |Cy 0 Sy 0| |1 0 0 0| | Cz -Sz 0 0| | Cy Sy*Sx Sy*Cx 0| // | Sz Cz 0 0|*| 0 1 0 0|*|0 Cx -Sx 0| = | Sz Cz 0 0|*| 0 Cx -Sx 0| // | 0 0 1 0| |-Sy 0 Cy 0| |0 Sx Cx 0| | 0 0 1 0| |-Sy Sx*Cy Cx*Cy 0| // | 0 0 0 1| | 0 0 0 1| |0 0 0 1| | 0 0 0 1| | 0 0 0 1| // Left Up Forward // | Cz*Cy Cz*Sy*Sx-Sz*Cx Sz*Sx+Cz*Sy*Cx 0| // | Sz*Cy Sz*Sy*Sx+Cz*Cx Cz*Sy*Sx-Sz*Cx 0| // |-Sy*Cx Cy*Cx Sy 0| // | 0 0 0 1| // The order of rotation is Pitch->Yaw->Roll (Zs*Xh*Yv) // Zs Xh Yv // | Cz -Sz 0 0| |1 0 0 0| |Cy 0 Sy 0| | Cz -Sz 0 0| | Cy 0 Sy 0| // | Sz Cz 0 0|*|0 Cx -Sx 0|*| 0 1 0 0| = | Sz Cz 0 0|*| Sx*Sy Cx -Sx*Cy 0|= // | 0 0 1 0| |0 Sx Cx 0| |-Sy 0 Cy 0| | 0 0 1 0| |-Cx*Sy Sx Cx*Cy 0| // | 0 0 0 1| |0 0 0 1| | 0 0 0 1| | 0 0 0 1| | 0 0 0 1| // Left Up Forward // | Cz*Cy-Sz*Sx*Sy -Sz*Cx Cz*Sy+Sz*Sx*Cy 0| // | Sz*Cy+Cz*Sx*Sy Cz*Cx Sz*Sy-Cz*Sx*Cy 0| // |-Cx*Sy Sx Cx*Cy 0| // | 0 0 0 1| // The order of rotation is Roll->Pitch->Yaw (Xh*Yv*Zs) // Xh Yv Zs // |1 0 0 0| | Cy 0 Sy 0| |Cz -Sz 0 0| |1 0 0 0| | Cy*Cz -Cy*Sz Sy 0| // |0 Cx -Sx 0|*| 0 1 0 0|*|Sz Cz 0 0| = |0 Cx -Sx 0|*| Sz Cz 0 0| // |0 Sx Cx 0| |-Sy 0 Cy 0| | 0 0 1 0| |0 Sx Cx 0| |-Sy*Cz Sy*Sz Cy 0| // |0 0 0 1| | 0 0 0 1| | 0 0 0 1| |0 0 0 1| | 0 0 0 1| // Left Up Forward // | Cy*Cz -Cy*Sz Sy 0| // =| Sx*Sy*Cz+Cx*Sz -Sx*Sy*Sz+Cx*Cz -Sx*Cy 0| // |-Cx*Sy*Cz+Sx*Sz Cx*Sy*Sz+Sx*Cz Cx*Cy 0| // | 0 0 0 1| // just write final answer from here on // The order of rotation is Pitch->Roll->Yaw (Xh*Zs*Yv) // Left Up Forward // |Cz*Cy -Sz Cz*Sy 0| //Xh*Zs*Yv=|Cx*Cy*Sz+Sx*Sy Cx*Cz Cx*Sz*Sy-Cy*Sx 0| // |Cy*Sx*Sz-Cx*Sy Cz*Sx Sx*Sz*Sy+Cx*Cy 0| // |0 0 0 1| // The order of rotation is Roll->Yaw->Pitch (Yv*Xh*Zs) // Left Up Forward // |Cy*Cz+Sy*Sx*Sz Cz*Sy*Sx-Cy*Sz Cx*Sy 0| //Yv*Xh*Zs=|Cx*Sz Cx*Cz -Sx 0| // |Cy*Sx*Sz-Cz*Sy Cy*Cz*Sx+Sy*Sz Cy*Cx 0| // |0 0 0 1| // The order of rotation is Yaw->Roll->Pitch (Yv*Zs*Xh) // Left Up Forward // |Cy*Cz Sy*Sx-Cy*Cx*Sz Cx*Sy+Cy*Sz*Sx 0| //Yv*Zs*Xh= |Sz Cz*Cx -Cz*Sx 0| // |-Cz*Sy Cy*Sx+Cx*Sy*Sz Cy*Cx-Sy*Sz*Sx 0| // |0 0 0 1| enum RotationSequence { XYZ, XZY, YXZ, YZX, ZXY, ZYX }; template Matrix getRotationMatrix(Vector ypr, bool radians, RotationSequence rotationSequence) { Matrix rotation(0); T Sx, Cx, Sy, Cy, Sz, Cz; Vector angles = ypr; if(!radians) angles *= M_PI/180; Sx = -sin(angles[0]); Cx = cos(angles[0]); Sy = -sin(angles[1]); Cy = cos(angles[1]); Sz = -sin(angles[2]); Cz = cos(angles[2]); switch (rotationSequence) { case ZXY: // | Cz*Cy-Sz*Sx*Sy -Sz*Cx Cz*Sy+Sz*Sx*Cy 0| // | Sz*Cy+Cz*Sx*Sy Cz*Cx Sz*Sy-Cz*Sx*Cy 0| // |-Cx*Sy Sx Cx*Cy 0| // | 0 0 0 1| rotation.updateElement(0, 0, Cz * Cy - Sz * Sx * Sy); rotation.updateElement(0, 1, -Sz * Cx); rotation.updateElement(0, 2, Cz * Sy + Sz * Sx * Cy); rotation.updateElement(1, 0, Sz * Cy + Cz * Sx * Sy); rotation.updateElement(1, 1, Cz * Cx); rotation.updateElement(1, 2, Sz * Sy - Cz * Sx * Cy); rotation.updateElement(2, 0, -Cx * Sy); rotation.updateElement(2, 1, Sx); rotation.updateElement(2, 2, Cx * Cy); break; case ZYX: // | Cz*Cy Cz*Sy*Sx-Sz*Cx Sz*Sx+Cz*Sy*Cx 0| // | Sz*Cy Sz*Sy*Sx+Cz*Cx Sz*Sy*Cx-Cz*Sx 0| // |-Sy Cy*Sx Cy*Cx 0| // | 0 0 0 1| rotation.updateElement(0, 0, Cz * Cy); rotation.updateElement(0, 1, Sx * Sy * Cz - Sz * Cx); rotation.updateElement(0, 2, Sz * Sx + Cz * Sy * Cx); rotation.updateElement(1, 0, Sz * Cy); rotation.updateElement(1, 1, Sz * Sy * Sx + Cz * Cx); rotation.updateElement(1, 2, Sz * Sy * Cx - Cz * Sx); rotation.updateElement(2, 0, -Sy); rotation.updateElement(2, 1, Cy * Sx); rotation.updateElement(2, 2, Cy*Cx); break; case XYZ: // | Cy*Cz -Cy*Sz Sy 0| // =| Sx*Sy*Cz+Cx*Sz -Sx*Sy*Sz+Cx*Cz -Sx*Cy 0| // |-Cx*Sy*Cz+Sx*Sz Cx*Sy*Sz+Sx*Cz Cx*Cy 0| // | 0 0 0 1| rotation.updateElement(0, 0, Cy * Cz); rotation.updateElement(0, 1, -Cy * Sz); rotation.updateElement(0, 2, Sy); rotation.updateElement(1, 0, Sx * Sy * Cz + Cx * Sz); rotation.updateElement(1, 1, -Sx * Sy * Sz + Cx * Cz); rotation.updateElement(1, 2, -Sx * Cy); rotation.updateElement(2, 0, -Cx * Sy * Cz + Sx * Sz); rotation.updateElement(2, 1, Cx * Sy * Sz + Sx * Cz); rotation.updateElement(2, 2, Cx * Cy); break; case XZY: // |Cz*Cy -Sz Cz*Sy 0| //Xh*Zs*Yv=|Cx*Cy*Sz+Sx*Sy Cx*Cz Cx*Sz*Sy-Cy*Sx 0| // |Cy*Sx*Sz-Cx*Sy Cz*Sx Sx*Sz*Sy+Cx*Cy 0| // |0 0 0 1| rotation.updateElement(0, 0, Cy * Cz); rotation.updateElement(0, 1, -Sz); rotation.updateElement(0, 2, Cz * Sy); rotation.updateElement(1, 0, Cx * Cy * Sz + Sx * Sy); rotation.updateElement(1, 1, Cx * Cz); rotation.updateElement(1, 2, Cx * Sy * Sz - Sx * Cy); rotation.updateElement(2, 0, Sx * Cy * Sz - Cx * Sy); rotation.updateElement(2, 1, Sx * Cz); rotation.updateElement(2, 2, Sx * Sy * Sz + Cx * Cy); break; case YXZ: // |Cy*Cz+Sy*Sx*Sz Cz*Sy*Sx-Cy*Sz Cx*Sy 0| //Yv*Xh*Zs=|Cx*Sz Cx*Cz -Sx 0| // |Cy*Sx*Sz-Cz*Sy Cy*Cz*Sx+Sy*Sz Cy*Cx 0| // |0 0 0 1| rotation.updateElement(0, 0, Cy*Cz+Sy*Sx*Sz ); rotation.updateElement(0, 1, Cz*Sy*Sx-Cy*Sz); rotation.updateElement(0, 2, Sy*Cx); rotation.updateElement(1, 0, Cx*Sz); rotation.updateElement(1, 1, Cx*Cz); rotation.updateElement(1, 2, -Sx); rotation.updateElement(2, 0, Cy*Sx*Sz-Cz*Sy); rotation.updateElement(2, 1, Cy*Cz*Sx+Sy*Sz); rotation.updateElement(2, 2, Cy*Cx); break; case YZX: // |Cy*Cz Sy*Sx-Cy*Cx*Sz Cx*Sy+Cy*Sz*Sx 0| //Yv*Zs*Xh= |Sz Cz*Cx -Cz*Sx 0| // |-Cz*Sy Cy*Sx+Cx*Sy*Sz Cy*Cx-Sy*Sz*Sx 0| // |0 0 0 1| rotation.updateElement(0, 0, Cy*Cz); rotation.updateElement(0, 1, Sy*Sx-Cy*Cx*Sz); rotation.updateElement(0, 2, Cx*Sy+Cy*Sz*Sx); rotation.updateElement(1, 0, Sz); rotation.updateElement(1, 1, Cz*Cx); rotation.updateElement(1, 2, -Cz*Sx); rotation.updateElement(2, 0, -Cz*Sy); rotation.updateElement(2, 1, Cy*Sx+Cx*Sy*Sz); rotation.updateElement(2, 2, Cy*Cx-Sy*Sz*Sx); break; } rotation.updateElement(3, 3, 1); return rotation; } template Matrix getRotationMatrixFromVectorAngle(Vector rotationVector, bool radians) { Vector rotationVector3 = {{rotationVector[0], rotationVector[1], rotationVector[2]}}; T theta = rotationVector3.magnitude(); if (!radians) theta *= M_PI / 180; Vector axis = rotationVector3; if (theta != 0) axis = axis.normalize(); Matrix rotation = Matrix::identity(); T S = sin(theta); T C = cos(theta); T OMC = 1 - C; T a00 = axis[0] * axis[0] * OMC; T a01 = axis[0] * axis[1] * OMC; T a02 = axis[0] * axis[2] * OMC; T a10 = axis[1] * axis[0] * OMC; T a11 = axis[1] * axis[1] * OMC; T a12 = axis[1] * axis[2] * OMC; T a20 = axis[2] * axis[0] * OMC; T a21 = axis[2] * axis[1] * OMC; T a22 = axis[2] * axis[2] * OMC; T a0S = axis[0] * S; T a1S = axis[1] * S; T a2S = axis[2] * S; rotation.updateElement(0, 0, C + a00); rotation.updateElement(0, 1, a01 - a2S); rotation.updateElement(0, 2, a02 + a1S); rotation.updateElement(1, 0, a10 + a2S); rotation.updateElement(1, 1, C + a11); rotation.updateElement(1, 2, a12 - a0S); rotation.updateElement(2, 0, a20 - a1S); rotation.updateElement(2, 1, a21 + a0S); rotation.updateElement(2, 2, C + a22); return rotation; } enum class MatrixElements { r00, r01, r02, r10, r11, r12, r20, r21, r22, }; template T findValue(Vector ypr, MatrixElements matrixElement, RotationSequence rotationSequence) { T Sx, Cx, Sy, Cy, Sz, Cz; Vector angles = ypr; Sx = sin(angles[0]); Cx = cos(angles[0]); Sy = sin(angles[1]); Cy = cos(angles[1]); Sz = sin(angles[2]); Cz = cos(angles[2]); switch (rotationSequence) { case ZXY: switch (matrixElement) { case MatrixElements::r00: return Cz * Cy - Sz * Sx * Sy; case MatrixElements::r01: return -Sz * Cx; case MatrixElements::r02: return Cz * Sy + Sz * Sx * Cy; case MatrixElements::r10: return Sz * Cy + Cz * Sx * Sy; case MatrixElements::r11: return Cz * Cx; case MatrixElements::r12: return Sz * Sy - Cz * Sx * Cy; case MatrixElements::r20: return -Cx * Sy; case MatrixElements::r21: return Sx; case MatrixElements::r22: return Cx * Cy; } break; case ZYX: switch (matrixElement) { case MatrixElements::r00: return Cz * Cy; case MatrixElements::r01: return Sx * Sy * Cz + Cx * Sz; case MatrixElements::r02: return -Cx * Sy * Cz + Sx * Sz; case MatrixElements::r10: return Cz * Sy; case MatrixElements::r11: return Sx * Sy * Sz - Cx * Cz; case MatrixElements::r12: return Cx * Sy * Sz + Sx * Cz; case MatrixElements::r20: return -Sy; case MatrixElements::r21: return Cy * Sx; case MatrixElements::r22: return Cy * Cx; } break; case XYZ: switch (matrixElement) { case MatrixElements::r00: return Cy * Cz; case MatrixElements::r01: return -Cy * Sz; case MatrixElements::r02: return Sy; case MatrixElements::r10: return Sx * Sy * Cz + Cx * Sz; case MatrixElements::r11: return -Sx * Sy * Sz + Cx * Cz; case MatrixElements::r12: return -Sx * Cy; case MatrixElements::r20: return -Cx * Sy * Cz + Sx * Sz; case MatrixElements::r21: return Cx * Sy * Sz + Sx * Cz; case MatrixElements::r22: return Cx * Cy; } break; case XZY: switch (matrixElement) { case MatrixElements::r00: return Cy * Cz; case MatrixElements::r01: return -Sz; case MatrixElements::r02: return Cz * Sy; case MatrixElements::r10: return Cx * Cy * Sz + Sx * Sy; case MatrixElements::r11: return Cx * Cz; case MatrixElements::r12: return Cx * Sy * Sz - Sx * Cy; case MatrixElements::r20: return Sx * Cy * Sz - Cx * Sy; case MatrixElements::r21: return Sx * Cz; case MatrixElements::r22: return Sx * Sy * Sz + Cx * Cy; } break; case YXZ: switch (matrixElement) { case MatrixElements::r00: return Cy * Cz + Sy * Sx * Sz; case MatrixElements::r01: return Cz * Sy * Sx - Cy * Sz; case MatrixElements::r02: return Cx * Sy; case MatrixElements::r10: return Cx * Sz; case MatrixElements::r11: return Cx * Cz; case MatrixElements::r12: return -Sx; case MatrixElements::r20: return -Cz * Sy + Cy * Sx * Sz; case MatrixElements::r21: return Cy * Cz * Sx + Sy * Sz; case MatrixElements::r22: return Cy * Cx; } break; case YZX: switch (matrixElement) { case MatrixElements::r00: return Cy * Cz; case MatrixElements::r01: return Sy * Sx - Cy * Cx * Sz; case MatrixElements::r02: return Cx * Sy + Cy * Sz * Sx; case MatrixElements::r10: return Sz; case MatrixElements::r11: return Cx * Cz; case MatrixElements::r12: return -Cz * Sx; case MatrixElements::r20: return -Cz * Sy; case MatrixElements::r21: return Cy * Sx + Cx * Sy * Sz; case MatrixElements::r22: return Cy * Cx - Sy * Sz * Sx; } break; } return 0; } template Matrix getTransformMatrix(Vector xyz, Vector ypr, bool radians) { Matrix transform( 0); Matrix rotation = getRotationMatrix(ypr, radians); for(int i=0; i<3; i++) for(int j=0; j<3; j++) transform.updateElement(i, j, rotation.getElement(i, j)); transform.updateElement(0,3, xyz[0]); transform.updateElement(1,3, xyz[1]); transform.updateElement(2,3, xyz[2]); transform.updateElement(3,3, 1); return transform; } template Vector getTranslationVector(Matrix transform_matrix) { Vector xyz; xyz.push_back(transform_matrix.getElement(0,3)); xyz.push_back(transform_matrix.getElement(1,3)); xyz.push_back(transform_matrix.getElement(2,3)); return xyz; } template Vector getYprVector(Matrix transform_matrix) { Vector result; Matrix rotation(0); for(int i=0; i<3; i++) for(int j=0; j<3; j++) rotation.updateElement(i, j, transform_matrix.getElement(i, j)); T sy = sqrt(rotation.getElement(0,0) * rotation.getElement(0,0) + rotation.getElement(1,0) * rotation.getElement(1,0) ); bool singular = sy < 1e-6; T x, y, z; if (!singular) { x = atan2(rotation.getElement(1,0), rotation.getElement(0,0)); y = atan2(-rotation.getElement(2,0), sy); z = atan2(rotation.getElement(2,1), rotation.getElement(2,2)); } else { x = 0; y = atan2(-rotation.getElement(2,0), sy); z = atan2(-rotation.getElement(1,2), rotation.getElement(1,1)); } result.push_back(x); result.push_back(y); result.push_back(z); return result; } Matrix GetPerspectiveMatrix( float viewWidth, float viewHeight, float nearVal, float farVal, bool actionType = false); Matrix GetOrthographicMatrix( float viewWidth, float viewHeight, float nearVal, float farVal, bool actionType = false); template static Matrix GetObliqueMatrix( T width, T height,T nearVal,T farVal, bool actionType = false) { int sign =1; if (actionType) sign=-1; Matrix result(0); result.updateElement(0,0,sign * nearVal/width); result.updateElement(1,1, sign * nearVal/height); result.updateElement(2,2,sign * (farVal + nearVal)/( farVal - nearVal )); result.updateElement(3,2,sign * 2*farVal * nearVal/( farVal - nearVal )); result.updateElement(2,3,-sign); return result; } class Shader { public: Shader() = default; Shader(std::string_view vertexSource, std::string_view fragmentSource); ~Shader(); Shader(const Shader&) = delete; Shader(Shader&& other) noexcept; Shader& operator=(const Shader&) = delete; Shader& operator=(Shader&& other) noexcept; void bind() const; void unbind() const; void setUniform(std::string_view name, const int &value); void setUniform(std::string_view name, const float &value); template void setUniform(std::string_view name, const Vector &value) { if (N == 2) glUniform2f(getUniformLocation(name), value[0], value[1]); else if (N == 3) glUniform3f(getUniformLocation(name), value[0], value[1], value[2]); else if (N == 4) glUniform4f(getUniformLocation(name), value[0], value[1], value[2],value[3]); } template void setUniform(std::string_view name, Matrix &value){ glUniformMatrix4fv(getUniformLocation(name), 1, GL_FALSE, value.data()); } private: void compile(GLuint shader, std::string_view source) const; GLint getUniformLocation(std::string_view name); private: GLuint m_program = 0; std::map m_uniforms; }; enum class BufferType { Vertex = GL_ARRAY_BUFFER, Index = GL_ELEMENT_ARRAY_BUFFER }; template class Buffer { public: Buffer() = default; Buffer(BufferType type, std::span data); ~Buffer(); Buffer(const Buffer&) = delete; Buffer(Buffer&& other) noexcept; Buffer& operator=(const Buffer&) = delete; Buffer& operator=(Buffer&& other) noexcept; void bind() const; void unbind() const; void draw(unsigned primitive) const; size_t getSize() const; void update(std::span data); private: GLuint m_buffer = 0; size_t m_size = 0; GLuint m_type = 0; }; extern template class Buffer; extern template class Buffer; extern template class Buffer; extern template class Buffer; class VertexArray { public: VertexArray(); ~VertexArray(); VertexArray(const VertexArray&) = delete; VertexArray(VertexArray&& other) noexcept; VertexArray& operator=(const VertexArray&) = delete; VertexArray& operator=(VertexArray&& other) noexcept; template void addBuffer(u32 index, const Buffer &buffer, u32 size = 3) const { glEnableVertexAttribArray(index); buffer.bind(); glVertexAttribPointer(index, size, gl::impl::getType(), GL_FALSE, size * sizeof(T), nullptr); buffer.unbind(); } void bind() const; void unbind() const; private: GLuint m_array = 0; }; class Texture { public: Texture(u32 width, u32 height); ~Texture(); Texture(const Texture&) = delete; Texture(Texture&& other) noexcept; Texture& operator=(const Texture&) = delete; Texture& operator=(Texture&& other) noexcept; void bind() const; void unbind() const; GLuint getTexture() const; u32 getWidth() const; u32 getHeight() const; GLuint release(); private: GLuint m_texture; u32 m_width, m_height; }; class FrameBuffer { public: FrameBuffer(u32 width, u32 height); ~FrameBuffer(); FrameBuffer(const FrameBuffer&) = delete; FrameBuffer(FrameBuffer&& other) noexcept; FrameBuffer& operator=(const FrameBuffer&) = delete; FrameBuffer& operator=(FrameBuffer&& other) noexcept; void bind() const; void unbind() const; void attachTexture(const Texture &texture) const; private: GLuint m_frameBuffer, m_renderBuffer; }; class AxesVectors { public: AxesVectors(); const std::vector& getVertices() const { return m_vertices; } const std::vector& getColors() const { return m_colors; } const std::vector& getIndices() const { return m_indices; } private: std::vector m_vertices; std::vector m_colors; std::vector m_indices; }; class AxesBuffers { public: AxesBuffers(const VertexArray& axesVertexArray, const AxesVectors &axesVectors); const gl::Buffer& getVertices() const { return m_vertices; } const gl::Buffer& getColors() const { return m_colors; } const gl::Buffer& getIndices() const { return m_indices; } private: gl::Buffer m_vertices; gl::Buffer m_colors; gl::Buffer m_indices; }; class GridVectors { public: GridVectors(int sliceCount); u32 getSlices() const { return m_slices; } const std::vector& getVertices() const { return m_vertices; } const std::vector& getColors() const { return m_colors; } const std::vector& getIndices() const { return m_indices; } private: u32 m_slices; std::vector m_vertices; std::vector m_colors; std::vector m_indices; }; class GridBuffers { public: GridBuffers(const VertexArray &gridVertexArray, const GridVectors &gridVectors); const gl::Buffer& getVertices() const { return m_vertices; } const gl::Buffer& getColors() const { return m_colors; } const gl::Buffer& getIndices() const { return m_indices; } private: gl::Buffer m_vertices; gl::Buffer m_colors; gl::Buffer m_indices; }; class LightSourceVectors { public: LightSourceVectors(int res); void moveTo(const Vector &position); const std::vector& getVertices() const { return m_vertices; } const std::vector& getNormals() const { return m_normals; } const std::vector& getColors() const { return m_colors; } const std::vector& getIndices() const { return m_indices; } void setColor(float r, float g, float b) { for (u32 i = 4; i < m_colors.size(); i += 4) { m_colors[i - 4] = r; m_colors[i - 3] = g; m_colors[i - 2] = b; m_colors[i - 1] = 1.0F; } } private: int m_resolution; float m_radius; std::vector m_vertices; std::vector m_normals; std::vector m_colors; std::vector m_indices; }; class LightSourceBuffers { public: LightSourceBuffers(const VertexArray &sourceVertexArray, const LightSourceVectors &sourceVectors); void moveVertices(const VertexArray &sourceVertexArray, const LightSourceVectors& sourceVectors); void updateColors(const VertexArray& sourceVertexArray, const LightSourceVectors& sourceVectors); const gl::Buffer& getVertices() const { return m_vertices; } const gl::Buffer& getNormals() const { return m_normals; } const gl::Buffer& getColors() const { return m_colors; } const gl::Buffer& getIndices() const { return m_indices; } private: gl::Buffer m_vertices; gl::Buffer m_normals; gl::Buffer m_colors; gl::Buffer m_indices; }; }