1
0
mirror of synced 2024-12-14 08:42:54 +01:00
ImHex/plugins/libimhex/source/pattern_language/evaluator.cpp
2021-09-10 22:12:37 +02:00

1314 lines
67 KiB
C++

#include <hex/pattern_language/evaluator.hpp>
#include <hex/api/content_registry.hpp>
#include <hex/providers/provider.hpp>
#include <hex/pattern_language/token.hpp>
#include <hex/pattern_language/pattern_data.hpp>
#include <bit>
#include <algorithm>
#include <unistd.h>
namespace hex::pl {
ASTNodeIntegerLiteral* Evaluator::evaluateScopeResolution(ASTNodeScopeResolution *node) {
ASTNode *currScope = nullptr;
for (const auto &identifier : node->getPath()) {
if (currScope == nullptr) {
if (!this->m_types.contains(identifier))
break;
currScope = this->m_types[identifier.data()];
} else if (auto enumNode = dynamic_cast<ASTNodeEnum*>(currScope); enumNode != nullptr) {
if (!enumNode->getEntries().contains(identifier))
break;
else
return evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(enumNode->getEntries().at(identifier)));
}
}
this->getConsole().abortEvaluation("failed to find identifier");
}
PatternData* Evaluator::findPattern(std::vector<PatternData*> currMembers, const ASTNodeRValue::Path &path) {
PatternData *currPattern = nullptr;
for (const auto &part : path) {
if (auto stringPart = std::get_if<std::string>(&part); stringPart != nullptr) {
if (*stringPart == "parent") {
if (currPattern == nullptr) {
if (!this->m_currMemberScope.empty())
currPattern = this->m_currMemberScope.back();
if (currPattern == nullptr)
this->getConsole().abortEvaluation("attempted to get parent of global namespace");
}
auto parent = currPattern->getParent();
if (parent == nullptr) {
this->getConsole().abortEvaluation("no parent available for identifier");
} else {
currPattern = parent;
}
} else {
if (currPattern != nullptr) {
if (auto structPattern = dynamic_cast<PatternDataStruct*>(currPattern); structPattern != nullptr)
currMembers = structPattern->getMembers();
else if (auto unionPattern = dynamic_cast<PatternDataUnion*>(currPattern); unionPattern != nullptr)
currMembers = unionPattern->getMembers();
else if (auto bitfieldPattern = dynamic_cast<PatternDataBitfield*>(currPattern); bitfieldPattern != nullptr) {
currMembers = bitfieldPattern->getFields();
}
else if (auto dynamicArrayPattern = dynamic_cast<PatternDataDynamicArray*>(currPattern); dynamicArrayPattern != nullptr) {
currMembers = dynamicArrayPattern->getEntries();
continue;
}
else if (auto staticArrayPattern = dynamic_cast<PatternDataStaticArray*>(currPattern); staticArrayPattern != nullptr) {
currMembers = { staticArrayPattern->getTemplate() };
continue;
}
else
this->getConsole().abortEvaluation("tried to access member of a non-struct/union type");
}
auto candidate = std::find_if(currMembers.begin(), currMembers.end(), [&](auto member) {
return member->getVariableName() == *stringPart;
});
if (candidate != currMembers.end())
currPattern = *candidate;
else
return nullptr;
}
} else if (auto nodePart = std::get_if<ASTNode*>(&part); nodePart != nullptr) {
if (auto numericalExpressionNode = dynamic_cast<ASTNodeNumericExpression*>(*nodePart)) {
auto arrayIndexNode = evaluateMathematicalExpression(numericalExpressionNode);
ON_SCOPE_EXIT { delete arrayIndexNode; };
if (currPattern != nullptr) {
if (auto dynamicArrayPattern = dynamic_cast<PatternDataDynamicArray*>(currPattern); dynamicArrayPattern != nullptr) {
std::visit([this](auto &&arrayIndex) {
if (std::is_floating_point_v<decltype(arrayIndex)>)
this->getConsole().abortEvaluation("cannot use float to index into array");
}, arrayIndexNode->getValue());
std::visit([&](auto &&arrayIndex){
if (arrayIndex >= 0 && arrayIndex < dynamicArrayPattern->getEntries().size())
currPattern = dynamicArrayPattern->getEntries()[arrayIndex];
else
this->getConsole().abortEvaluation(hex::format("tried to access out of bounds index {} of '{}'", arrayIndex, currPattern->getVariableName()));
}, arrayIndexNode->getValue());
} else if (auto staticArrayPattern = dynamic_cast<PatternDataStaticArray*>(currPattern); staticArrayPattern != nullptr) {
std::visit([this](auto &&arrayIndex) {
if (std::is_floating_point_v<decltype(arrayIndex)>)
this->getConsole().abortEvaluation("cannot use float to index into array");
}, arrayIndexNode->getValue());
std::visit([&](auto &&arrayIndex){
if (arrayIndex >= 0 && arrayIndex < staticArrayPattern->getEntryCount()) {
currPattern = staticArrayPattern->getTemplate();
currPattern->setOffset(staticArrayPattern->getOffset() + arrayIndex * staticArrayPattern->getSize());
}
else
this->getConsole().abortEvaluation(hex::format("tried to access out of bounds index {} of '{}'", arrayIndex, currPattern->getVariableName()));
}, arrayIndexNode->getValue());
}
else
this->getConsole().abortEvaluation("tried to index into non-array type");
}
} else {
this->getConsole().abortEvaluation(hex::format("invalid node in rvalue path. This is a bug!'"));
}
}
if (auto pointerPattern = dynamic_cast<PatternDataPointer*>(currPattern); pointerPattern != nullptr)
currPattern = pointerPattern->getPointedAtPattern();
}
return currPattern;
}
PatternData* Evaluator::patternFromName(const ASTNodeRValue::Path &path) {
PatternData *currPattern = nullptr;
// Local variable access
if (!this->m_localVariables.empty())
currPattern = this->findPattern(*this->m_localVariables.back(), path);
// If no local variable was found try local structure members
if (!this->m_currMembers.empty()) {
currPattern = this->findPattern(*this->m_currMembers.back(), path);
}
// If no local member was found, try globally
if (currPattern == nullptr) {
currPattern = this->findPattern(this->m_globalMembers, path);
}
// If still no pattern was found, the path is invalid
if (currPattern == nullptr) {
std::string identifier;
for (const auto& part : path) {
if (part.index() == 0) {
// Path part is a identifier
identifier += std::get<std::string>(part);
} else if (part.index() == 1) {
// Path part is a array index
identifier += "[..]";
}
identifier += ".";
}
identifier.pop_back();
this->getConsole().abortEvaluation(hex::format("no identifier with name '{}' found", identifier));
}
return currPattern;
}
ASTNodeIntegerLiteral* Evaluator::evaluateRValue(ASTNodeRValue *node) {
if (node->getPath().size() == 1) {
if (auto part = std::get_if<std::string>(&node->getPath()[0]); part != nullptr && *part == "$")
return new ASTNodeIntegerLiteral(this->m_currOffset);
}
auto currPattern = this->patternFromName(node->getPath());
if (auto unsignedPattern = dynamic_cast<PatternDataUnsigned*>(currPattern); unsignedPattern != nullptr) {
u8 value[unsignedPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + unsignedPattern->getOffset(), unsignedPattern->getSize());
else
this->m_provider->read(unsignedPattern->getOffset(), value, unsignedPattern->getSize());
switch (unsignedPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u8*>(value), 1, unsignedPattern->getEndian()));
case 2: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u16*>(value), 2, unsignedPattern->getEndian()));
case 4: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u32*>(value), 4, unsignedPattern->getEndian()));
case 8: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u64*>(value), 8, unsignedPattern->getEndian()));
case 16: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u128*>(value), 16, unsignedPattern->getEndian()));
default: this->getConsole().abortEvaluation("invalid rvalue size");
}
} else if (auto signedPattern = dynamic_cast<PatternDataSigned*>(currPattern); signedPattern != nullptr) {
u8 value[signedPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + signedPattern->getOffset(), signedPattern->getSize());
else
this->m_provider->read(signedPattern->getOffset(), value, signedPattern->getSize());
switch (signedPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<s8*>(value), 1, signedPattern->getEndian()));
case 2: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<s16*>(value), 2, signedPattern->getEndian()));
case 4: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<s32*>(value), 4, signedPattern->getEndian()));
case 8: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<s64*>(value), 8, signedPattern->getEndian()));
case 16: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<s128*>(value), 16, signedPattern->getEndian()));
default: this->getConsole().abortEvaluation("invalid rvalue size");
}
} else if (auto boolPattern = dynamic_cast<PatternDataBoolean*>(currPattern); boolPattern != nullptr) {
u8 value[boolPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + boolPattern->getOffset(), boolPattern->getSize());
else
this->m_provider->read(boolPattern->getOffset(), value, boolPattern->getSize());
return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u8*>(value), 1, boolPattern->getEndian()));
} else if (auto charPattern = dynamic_cast<PatternDataCharacter*>(currPattern); charPattern != nullptr) {
u8 value[charPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + charPattern->getOffset(), charPattern->getSize());
else
this->m_provider->read(charPattern->getOffset(), value, charPattern->getSize());
return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<char*>(value), 1, charPattern->getEndian()));
} else if (auto char16Pattern = dynamic_cast<PatternDataCharacter16*>(currPattern); char16Pattern != nullptr) {
u8 value[char16Pattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + char16Pattern->getOffset(), char16Pattern->getSize());
else
this->m_provider->read(char16Pattern->getOffset(), value, char16Pattern->getSize());
return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u16*>(value), 1, char16Pattern->getEndian()));
} else if (auto enumPattern = dynamic_cast<PatternDataEnum*>(currPattern); enumPattern != nullptr) {
u8 value[enumPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + enumPattern->getOffset(), enumPattern->getSize());
else
this->m_provider->read(enumPattern->getOffset(), value, enumPattern->getSize());
switch (enumPattern->getSize()) {
case 1: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u8*>(value), 1, enumPattern->getEndian()));
case 2: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u16*>(value), 2, enumPattern->getEndian()));
case 4: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u32*>(value), 4, enumPattern->getEndian()));
case 8: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u64*>(value), 8, enumPattern->getEndian()));
case 16: return new ASTNodeIntegerLiteral(hex::changeEndianess(*reinterpret_cast<u128*>(value), 16, enumPattern->getEndian()));
default: this->getConsole().abortEvaluation("invalid rvalue size");
}
} else if (auto bitfieldFieldPattern = dynamic_cast<PatternDataBitfieldField*>(currPattern); bitfieldFieldPattern != nullptr) {
u8 value[bitfieldFieldPattern->getSize()];
if (currPattern->isLocal())
std::memcpy(value, this->m_localStack.data() + bitfieldFieldPattern->getOffset(), bitfieldFieldPattern->getSize());
else
this->m_provider->read(bitfieldFieldPattern->getOffset(), value, bitfieldFieldPattern->getSize());
u8 bitOffset = bitfieldFieldPattern->getBitOffset();
u8 bitSize = bitfieldFieldPattern->getBitSize();
u128 fieldValue = 0;
std::memcpy(&fieldValue, value + (bitOffset / 8), (bitSize / 8) + 1);
return new ASTNodeIntegerLiteral(hex::extract((bitOffset + bitSize) - 1 - ((bitOffset / 8) * 8), bitOffset - ((bitOffset / 8) * 8), fieldValue));
} else
this->getConsole().abortEvaluation("tried to use non-integer value in numeric expression");
}
ASTNode* Evaluator::evaluateFunctionCall(ASTNodeFunctionCall *node) {
std::vector<ASTNode*> evaluatedParams;
ON_SCOPE_EXIT {
for (auto &param : evaluatedParams)
delete param;
};
for (auto &param : node->getParams()) {
if (auto numericExpression = dynamic_cast<ASTNodeNumericExpression*>(param); numericExpression != nullptr)
evaluatedParams.push_back(this->evaluateMathematicalExpression(numericExpression));
else if (auto typeOperatorExpression = dynamic_cast<ASTNodeTypeOperator*>(param); typeOperatorExpression != nullptr)
evaluatedParams.push_back(this->evaluateTypeOperator(typeOperatorExpression));
else if (auto stringLiteral = dynamic_cast<ASTNodeStringLiteral*>(param); stringLiteral != nullptr)
evaluatedParams.push_back(stringLiteral->clone());
}
ContentRegistry::PatternLanguageFunctions::Function *function;
if (this->m_definedFunctions.contains(node->getFunctionName().data()))
function = &this->m_definedFunctions[node->getFunctionName().data()];
else if (ContentRegistry::PatternLanguageFunctions::getEntries().contains(node->getFunctionName().data()))
function = &ContentRegistry::PatternLanguageFunctions::getEntries()[node->getFunctionName().data()];
else
this->getConsole().abortEvaluation(hex::format("no function named '{0}' found", node->getFunctionName().data()));
if (function->parameterCount == ContentRegistry::PatternLanguageFunctions::UnlimitedParameters) {
; // Don't check parameter count
}
else if (function->parameterCount & ContentRegistry::PatternLanguageFunctions::LessParametersThan) {
if (evaluatedParams.size() >= (function->parameterCount & ~ContentRegistry::PatternLanguageFunctions::LessParametersThan))
this->getConsole().abortEvaluation(hex::format("too many parameters for function '{0}'. Expected {1}", node->getFunctionName().data(), function->parameterCount & ~ContentRegistry::PatternLanguageFunctions::LessParametersThan));
} else if (function->parameterCount & ContentRegistry::PatternLanguageFunctions::MoreParametersThan) {
if (evaluatedParams.size() <= (function->parameterCount & ~ContentRegistry::PatternLanguageFunctions::MoreParametersThan))
this->getConsole().abortEvaluation(hex::format("too few parameters for function '{0}'. Expected {1}", node->getFunctionName().data(), function->parameterCount & ~ContentRegistry::PatternLanguageFunctions::MoreParametersThan));
} else if (function->parameterCount != evaluatedParams.size()) {
this->getConsole().abortEvaluation(hex::format("invalid number of parameters for function '{0}'. Expected {1}", node->getFunctionName().data(), function->parameterCount));
}
return function->func(*this, evaluatedParams);
}
ASTNodeIntegerLiteral* Evaluator::evaluateTypeOperator(ASTNodeTypeOperator *typeOperatorNode) {
if (auto rvalue = dynamic_cast<ASTNodeRValue*>(typeOperatorNode->getExpression()); rvalue != nullptr) {
auto pattern = this->patternFromName(rvalue->getPath());
switch (typeOperatorNode->getOperator()) {
case Token::Operator::AddressOf:
return new ASTNodeIntegerLiteral(static_cast<u64>(pattern->getOffset()));
case Token::Operator::SizeOf:
return new ASTNodeIntegerLiteral(static_cast<u64>(pattern->getSize()));
default:
this->getConsole().abortEvaluation("invalid type operator used. This is a bug!");
}
} else {
this->getConsole().abortEvaluation("non-rvalue used in type operator");
}
}
#define FLOAT_BIT_OPERATION(name) \
auto name(hex::floating_point auto left, auto right) { throw std::runtime_error(""); return 0; } \
auto name(auto left, hex::floating_point auto right) { throw std::runtime_error(""); return 0; } \
auto name(hex::floating_point auto left, hex::floating_point auto right) { throw std::runtime_error(""); return 0; } \
auto name(hex::integral auto left, hex::integral auto right)
namespace {
FLOAT_BIT_OPERATION(shiftLeft) {
return left << right;
}
FLOAT_BIT_OPERATION(shiftRight) {
return left >> right;
}
FLOAT_BIT_OPERATION(bitAnd) {
return left & right;
}
FLOAT_BIT_OPERATION(bitOr) {
return left | right;
}
FLOAT_BIT_OPERATION(bitXor) {
return left ^ right;
}
FLOAT_BIT_OPERATION(bitNot) {
return ~right;
}
FLOAT_BIT_OPERATION(modulus) {
return left % right;
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateOperator(ASTNodeIntegerLiteral *left, ASTNodeIntegerLiteral *right, Token::Operator op) {
try {
return std::visit([&](auto &&leftValue, auto &&rightValue) -> ASTNodeIntegerLiteral * {
switch (op) {
case Token::Operator::Plus:
return new ASTNodeIntegerLiteral(leftValue + rightValue);
case Token::Operator::Minus:
return new ASTNodeIntegerLiteral(leftValue - rightValue);
case Token::Operator::Star:
return new ASTNodeIntegerLiteral(leftValue * rightValue);
case Token::Operator::Slash:
if (rightValue == 0)
this->getConsole().abortEvaluation("Division by zero");
return new ASTNodeIntegerLiteral(leftValue / rightValue);
case Token::Operator::Percent:
if (rightValue == 0)
this->getConsole().abortEvaluation("Division by zero");
return new ASTNodeIntegerLiteral(modulus(leftValue, rightValue));
case Token::Operator::ShiftLeft:
return new ASTNodeIntegerLiteral(shiftLeft(leftValue, rightValue));
case Token::Operator::ShiftRight:
return new ASTNodeIntegerLiteral(shiftRight(leftValue, rightValue));
case Token::Operator::BitAnd:
return new ASTNodeIntegerLiteral(bitAnd(leftValue, rightValue));
case Token::Operator::BitXor:
return new ASTNodeIntegerLiteral(bitXor(leftValue, rightValue));
case Token::Operator::BitOr:
return new ASTNodeIntegerLiteral(bitOr(leftValue, rightValue));
case Token::Operator::BitNot:
return new ASTNodeIntegerLiteral(bitNot(leftValue, rightValue));
case Token::Operator::BoolEquals:
return new ASTNodeIntegerLiteral(leftValue == rightValue);
case Token::Operator::BoolNotEquals:
return new ASTNodeIntegerLiteral(leftValue != rightValue);
case Token::Operator::BoolGreaterThan:
return new ASTNodeIntegerLiteral(leftValue > rightValue);
case Token::Operator::BoolLessThan:
return new ASTNodeIntegerLiteral(leftValue < rightValue);
case Token::Operator::BoolGreaterThanOrEquals:
return new ASTNodeIntegerLiteral(leftValue >= rightValue);
case Token::Operator::BoolLessThanOrEquals:
return new ASTNodeIntegerLiteral(leftValue <= rightValue);
case Token::Operator::BoolAnd:
return new ASTNodeIntegerLiteral(leftValue && rightValue);
case Token::Operator::BoolXor:
return new ASTNodeIntegerLiteral(leftValue && !rightValue || !leftValue && rightValue);
case Token::Operator::BoolOr:
return new ASTNodeIntegerLiteral(leftValue || rightValue);
case Token::Operator::BoolNot:
return new ASTNodeIntegerLiteral(!rightValue);
default:
this->getConsole().abortEvaluation("invalid operator used in mathematical expression");
}
}, left->getValue(), right->getValue());
} catch (std::runtime_error &e) {
this->getConsole().abortEvaluation("bitwise operations on floating point numbers are forbidden");
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateOperand(ASTNode *node) {
if (auto exprLiteral = dynamic_cast<ASTNodeIntegerLiteral*>(node); exprLiteral != nullptr)
return exprLiteral;
else if (auto exprExpression = dynamic_cast<ASTNodeNumericExpression*>(node); exprExpression != nullptr)
return evaluateMathematicalExpression(exprExpression);
else if (auto exprRvalue = dynamic_cast<ASTNodeRValue*>(node); exprRvalue != nullptr)
return evaluateRValue(exprRvalue);
else if (auto exprScopeResolution = dynamic_cast<ASTNodeScopeResolution*>(node); exprScopeResolution != nullptr)
return evaluateScopeResolution(exprScopeResolution);
else if (auto exprTernary = dynamic_cast<ASTNodeTernaryExpression*>(node); exprTernary != nullptr)
return evaluateTernaryExpression(exprTernary);
else if (auto exprFunctionCall = dynamic_cast<ASTNodeFunctionCall*>(node); exprFunctionCall != nullptr) {
auto returnValue = evaluateFunctionCall(exprFunctionCall);
if (returnValue == nullptr)
this->getConsole().abortEvaluation("function returning void used in expression");
else if (auto integerNode = dynamic_cast<ASTNodeIntegerLiteral*>(returnValue); integerNode != nullptr)
return integerNode;
else
this->getConsole().abortEvaluation("function not returning a numeric value used in expression");
} else if (auto typeOperator = dynamic_cast<ASTNodeTypeOperator*>(node); typeOperator != nullptr)
return evaluateTypeOperator(typeOperator);
else
this->getConsole().abortEvaluation("invalid operand");
}
ASTNodeIntegerLiteral* Evaluator::evaluateTernaryExpression(ASTNodeTernaryExpression *node) {
switch (node->getOperator()) {
case Token::Operator::TernaryConditional: {
auto condition = this->evaluateOperand(node->getFirstOperand());
ON_SCOPE_EXIT { delete condition; };
if (std::visit([](auto &&value){ return value != 0; }, condition->getValue()))
return this->evaluateOperand(node->getSecondOperand());
else
return this->evaluateOperand(node->getThirdOperand());
}
default:
this->getConsole().abortEvaluation("invalid operator used in ternary expression");
}
}
ASTNodeIntegerLiteral* Evaluator::evaluateMathematicalExpression(ASTNodeNumericExpression *node) {
auto leftInteger = this->evaluateOperand(node->getLeftOperand());
auto rightInteger = this->evaluateOperand(node->getRightOperand());
return evaluateOperator(leftInteger, rightInteger, node->getOperator());
}
void Evaluator::createLocalVariable(const std::string &varName, PatternData *pattern) {
auto startOffset = this->m_currOffset;
ON_SCOPE_EXIT { this->m_currOffset = startOffset; };
auto endOfStack = this->m_localStack.size();
for (auto &variable : *this->m_localVariables.back()) {
if (variable->getVariableName() == varName)
this->getConsole().abortEvaluation(hex::format("redefinition of variable {}", varName));
}
this->m_localStack.resize(endOfStack + pattern->getSize());
pattern->setVariableName(std::string(varName));
pattern->setOffset(endOfStack);
pattern->setLocal(true);
this->m_localVariables.back()->push_back(pattern);
std::memset(this->m_localStack.data() + pattern->getOffset(), 0x00, pattern->getSize());
}
void Evaluator::setLocalVariableValue(const std::string &varName, const void *value, size_t size) {
PatternData *varPattern = nullptr;
for (auto &var : *this->m_localVariables.back()) {
if (var->getVariableName() == varName)
varPattern = var;
}
std::memset(this->m_localStack.data() + varPattern->getOffset(), 0x00, varPattern->getSize());
std::memcpy(this->m_localStack.data() + varPattern->getOffset(), value, std::min(varPattern->getSize(), size));
}
void Evaluator::evaluateFunctionDefinition(ASTNodeFunctionDefinition *node) {
ContentRegistry::PatternLanguageFunctions::Function function = {
(u32)node->getParams().size(),
[paramNames = node->getParams(), body = node->getBody()](Evaluator& evaluator, std::vector<ASTNode*> &params) -> ASTNode* {
// Create local variables from parameters
std::vector<PatternData*> localVariables;
evaluator.m_localVariables.push_back(&localVariables);
ON_SCOPE_EXIT {
u32 stackSizeToDrop = 0;
for (auto &localVar : *evaluator.m_localVariables.back()) {
stackSizeToDrop += localVar->getSize();
delete localVar;
}
evaluator.m_localVariables.pop_back();
evaluator.m_localStack.resize(evaluator.m_localStack.size() - stackSizeToDrop);
};
auto startOffset = evaluator.m_currOffset;
for (u32 i = 0; i < params.size(); i++) {
if (auto integerLiteralNode = dynamic_cast<ASTNodeIntegerLiteral*>(params[i]); integerLiteralNode != nullptr) {
std::visit([&](auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
PatternData *pattern;
if constexpr (std::is_unsigned_v<Type>)
pattern = new PatternDataUnsigned(0, sizeof(value));
else if constexpr (std::is_signed_v<Type>)
pattern = new PatternDataSigned(0, sizeof(value));
else if constexpr (std::is_floating_point_v<Type>)
pattern = new PatternDataFloat(0, sizeof(value));
else return;
evaluator.createLocalVariable(paramNames[i], pattern);
evaluator.setLocalVariableValue(paramNames[i], &value, sizeof(value));
}, integerLiteralNode->getValue());
} else if (auto stringLiteralNode = dynamic_cast<ASTNodeStringLiteral*>(params[i]); stringLiteralNode != nullptr) {
auto string = stringLiteralNode->getString();
evaluator.createLocalVariable(paramNames[i], new PatternDataString(0, string.length()));
evaluator.setLocalVariableValue(paramNames[i], string.data(), string.length());
} else
evaluator.getConsole().abortEvaluation(hex::format("cannot create local variable {}, invalid type", paramNames[i]));
}
evaluator.m_currOffset = startOffset;
return evaluator.evaluateFunctionBody(body).value_or(nullptr);
}
};
if (this->m_definedFunctions.contains(std::string(node->getName())))
this->getConsole().abortEvaluation(hex::format("redefinition of function {}", node->getName()));
this->m_definedFunctions.insert({ std::string(node->getName()), function });
}
std::optional<ASTNode*> Evaluator::evaluateFunctionBody(const std::vector<ASTNode*> &body) {
std::optional<ASTNode*> returnResult;
auto startOffset = this->m_currOffset;
for (auto &statement : body) {
ON_SCOPE_EXIT { this->m_currOffset = startOffset; };
if (auto functionCallNode = dynamic_cast<ASTNodeFunctionCall*>(statement); functionCallNode != nullptr) {
auto result = this->evaluateFunctionCall(functionCallNode);
delete result;
} else if (auto varDeclNode = dynamic_cast<ASTNodeVariableDecl*>(statement); varDeclNode != nullptr) {
auto pattern = this->evaluateVariable(varDeclNode);
this->createLocalVariable(varDeclNode->getName(), pattern);
} else if (auto multiVarDeclNode = dynamic_cast<ASTNodeMultiVariableDecl*>(statement); multiVarDeclNode != nullptr) {
for (auto &delc : multiVarDeclNode->getVariables()) {
if (auto varDecl = dynamic_cast<ASTNodeVariableDecl*>(delc); varDecl != nullptr) {
auto pattern = this->evaluateVariable(varDecl);
this->createLocalVariable(varDecl->getName(), pattern);
} else
this->getConsole().abortEvaluation("invalid multi-variable declaration");
}
} else if (auto assignmentNode = dynamic_cast<ASTNodeAssignment*>(statement); assignmentNode != nullptr) {
if (auto numericExpressionNode = dynamic_cast<ASTNodeNumericExpression*>(assignmentNode->getRValue()); numericExpressionNode != nullptr) {
auto value = this->evaluateMathematicalExpression(numericExpressionNode);
ON_SCOPE_EXIT { delete value; };
std::visit([&](auto &&value) {
this->setLocalVariableValue(assignmentNode->getLValueName(), &value, sizeof(value));
}, value->getValue());
} else {
this->getConsole().abortEvaluation("invalid rvalue used in assignment");
}
} else if (auto returnNode = dynamic_cast<ASTNodeReturnStatement*>(statement); returnNode != nullptr) {
if (returnNode->getRValue() == nullptr) {
returnResult = nullptr;
} else if (auto numericExpressionNode = dynamic_cast<ASTNodeNumericExpression*>(returnNode->getRValue()); numericExpressionNode != nullptr) {
returnResult = this->evaluateMathematicalExpression(numericExpressionNode);
} else {
this->getConsole().abortEvaluation("invalid rvalue used in return statement");
}
} else if (auto conditionalNode = dynamic_cast<ASTNodeConditionalStatement*>(statement); conditionalNode != nullptr) {
if (auto numericExpressionNode = dynamic_cast<ASTNodeNumericExpression*>(conditionalNode->getCondition()); numericExpressionNode != nullptr) {
auto condition = this->evaluateMathematicalExpression(numericExpressionNode);
u32 localVariableStartCount = this->m_localVariables.back()->size();
u32 localVariableStackStartSize = this->m_localStack.size();
if (std::visit([](auto &&value) { return value != 0; }, condition->getValue()))
returnResult = this->evaluateFunctionBody(conditionalNode->getTrueBody());
else
returnResult = this->evaluateFunctionBody(conditionalNode->getFalseBody());
for (u32 i = localVariableStartCount; i < this->m_localVariables.back()->size(); i++)
delete (*this->m_localVariables.back())[i];
this->m_localVariables.back()->resize(localVariableStartCount);
this->m_localStack.resize(localVariableStackStartSize);
} else {
this->getConsole().abortEvaluation("invalid rvalue used in return statement");
}
} else if (auto whileLoopNode = dynamic_cast<ASTNodeWhileStatement*>(statement); whileLoopNode != nullptr) {
if (auto numericExpressionNode = dynamic_cast<ASTNodeNumericExpression*>(whileLoopNode->getCondition()); numericExpressionNode != nullptr) {
auto condition = this->evaluateMathematicalExpression(numericExpressionNode);
while (std::visit([](auto &&value) { return value != 0; }, condition->getValue())) {
u32 localVariableStartCount = this->m_localVariables.back()->size();
u32 localVariableStackStartSize = this->m_localStack.size();
returnResult = this->evaluateFunctionBody(whileLoopNode->getBody());
if (returnResult.has_value())
break;
for (u32 i = localVariableStartCount; i < this->m_localVariables.back()->size(); i++)
delete (*this->m_localVariables.back())[i];
this->m_localVariables.back()->resize(localVariableStartCount);
this->m_localStack.resize(localVariableStackStartSize);
condition = this->evaluateMathematicalExpression(numericExpressionNode);
}
} else {
this->getConsole().abortEvaluation("invalid rvalue used in return statement");
}
}
if (returnResult.has_value())
return returnResult.value();
}
return { };
}
PatternData* Evaluator::evaluateAttributes(ASTNode *currNode, PatternData *currPattern) {
auto attributableNode = dynamic_cast<Attributable*>(currNode);
if (attributableNode == nullptr)
this->getConsole().abortEvaluation("attributes applied to invalid expression");
auto handleVariableAttributes = [this, &currPattern](auto attribute, auto value) {
if (attribute == "color" && value.has_value())
currPattern->setColor(hex::changeEndianess(u32(strtoul(value->data(), nullptr, 16)) << 8, std::endian::big));
else if (attribute == "name" && value.has_value())
currPattern->setVariableName(value->data());
else if (attribute == "comment" && value.has_value())
currPattern->setComment(value->data());
else if (attribute == "hidden" && value.has_value())
currPattern->setHidden(true);
else
this->getConsole().abortEvaluation("unknown or invalid attribute");
};
auto &attributes = attributableNode->getAttributes();
if (attributes.empty())
return currPattern;
if (auto variableDeclNode = dynamic_cast<ASTNodeVariableDecl*>(currNode); variableDeclNode != nullptr) {
for (auto &attribute : attributes)
handleVariableAttributes(attribute->getAttribute(), attribute->getValue());
} else if (auto arrayDeclNode = dynamic_cast<ASTNodeArrayVariableDecl*>(currNode); arrayDeclNode != nullptr) {
for (auto &attribute : attributes)
handleVariableAttributes(attribute->getAttribute(), attribute->getValue());
} else if (auto pointerDeclNode = dynamic_cast<ASTNodePointerVariableDecl*>(currNode); pointerDeclNode != nullptr) {
for (auto &attribute : attributes)
handleVariableAttributes(attribute->getAttribute(), attribute->getValue());
} else if (auto structNode = dynamic_cast<ASTNodeStruct*>(currNode); structNode != nullptr) {
this->getConsole().abortEvaluation("unknown or invalid attribute");
} else if (auto unionNode = dynamic_cast<ASTNodeUnion*>(currNode); unionNode != nullptr) {
this->getConsole().abortEvaluation("unknown or invalid attribute");
} else if (auto enumNode = dynamic_cast<ASTNodeEnum*>(currNode); enumNode != nullptr) {
this->getConsole().abortEvaluation("unknown or invalid attribute");
} else if (auto bitfieldNode = dynamic_cast<ASTNodeBitfield*>(currNode); bitfieldNode != nullptr) {
this->getConsole().abortEvaluation("unknown or invalid attribute");
} else
this->getConsole().abortEvaluation("attributes applied to invalid expression");
return currPattern;
}
PatternData* Evaluator::evaluateBuiltinType(ASTNodeBuiltinType *node) {
auto &type = node->getType();
auto typeSize = Token::getTypeSize(type);
PatternData *pattern;
if (type == Token::ValueType::Character)
pattern = new PatternDataCharacter(this->m_currOffset);
else if (type == Token::ValueType::Character16)
pattern = new PatternDataCharacter16(this->m_currOffset);
else if (type == Token::ValueType::Boolean)
pattern = new PatternDataBoolean(this->m_currOffset);
else if (Token::isUnsigned(type))
pattern = new PatternDataUnsigned(this->m_currOffset, typeSize);
else if (Token::isSigned(type))
pattern = new PatternDataSigned(this->m_currOffset, typeSize);
else if (Token::isFloatingPoint(type))
pattern = new PatternDataFloat(this->m_currOffset, typeSize);
else if (type == Token::ValueType::Padding)
pattern = new PatternDataPadding(this->m_currOffset, 1);
else
this->getConsole().abortEvaluation("invalid builtin type");
this->m_currOffset += typeSize;
pattern->setTypeName(Token::getTypeName(type));
pattern->setEndian(this->getCurrentEndian());
return pattern;
}
void Evaluator::evaluateMember(ASTNode *node, std::vector<PatternData*> &currMembers, bool increaseOffset) {
auto startOffset = this->m_currOffset;
if (auto memberVariableNode = dynamic_cast<ASTNodeVariableDecl*>(node); memberVariableNode != nullptr)
currMembers.push_back(this->evaluateVariable(memberVariableNode));
else if (auto memberMultiVariableNode = dynamic_cast<ASTNodeMultiVariableDecl*>(node); memberMultiVariableNode != nullptr) {
for (auto decl : memberMultiVariableNode->getVariables()) {
if (auto variableDecl = dynamic_cast<ASTNodeVariableDecl*>(decl); variableDecl != nullptr)
currMembers.push_back(this->evaluateVariable(variableDecl));
else
this->getConsole().abortEvaluation("invalid multi-variable declaration");
}
}
else if (auto memberArrayNode = dynamic_cast<ASTNodeArrayVariableDecl*>(node); memberArrayNode != nullptr)
currMembers.push_back(this->evaluateArray(memberArrayNode));
else if (auto memberPointerNode = dynamic_cast<ASTNodePointerVariableDecl*>(node); memberPointerNode != nullptr)
currMembers.push_back(this->evaluatePointer(memberPointerNode));
else if (auto conditionalNode = dynamic_cast<ASTNodeConditionalStatement*>(node); conditionalNode != nullptr) {
auto condition = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(conditionalNode->getCondition()));
if (std::visit([](auto &&value) { return value != 0; }, condition->getValue())) {
for (auto &statement : conditionalNode->getTrueBody()) {
this->evaluateMember(statement, currMembers, increaseOffset);
}
} else {
for (auto &statement : conditionalNode->getFalseBody()) {
this->evaluateMember(statement, currMembers, increaseOffset);
}
}
delete condition;
}
else
this->getConsole().abortEvaluation("invalid struct member");
if (!increaseOffset)
this->m_currOffset = startOffset;
}
PatternData* Evaluator::evaluateStruct(ASTNodeStruct *node) {
std::vector<PatternData*> memberPatterns;
auto structPattern = new PatternDataStruct(this->m_currOffset, 0);
structPattern->setParent(this->m_currMemberScope.back());
this->m_currMembers.push_back(&memberPatterns);
this->m_currMemberScope.push_back(structPattern);
ON_SCOPE_EXIT {
this->m_currMembers.pop_back();
this->m_currMemberScope.pop_back();
};
this->m_currRecursionDepth++;
if (this->m_currRecursionDepth > this->m_recursionLimit)
this->getConsole().abortEvaluation(hex::format("evaluation depth exceeds maximum of {0}. Use #pragma eval_depth <depth> to increase the maximum", this->m_recursionLimit));
auto startOffset = this->m_currOffset;
for (auto &member : node->getMembers()) {
this->evaluateMember(member, memberPatterns, true);
structPattern->setMembers(memberPatterns);
}
structPattern->setSize(this->m_currOffset - startOffset);
this->m_currRecursionDepth--;
return this->evaluateAttributes(node, structPattern);
}
PatternData* Evaluator::evaluateUnion(ASTNodeUnion *node) {
std::vector<PatternData*> memberPatterns;
auto unionPattern = new PatternDataUnion(this->m_currOffset, 0);
unionPattern->setParent(this->m_currMemberScope.back());
this->m_currMembers.push_back(&memberPatterns);
this->m_currMemberScope.push_back(unionPattern);
ON_SCOPE_EXIT {
this->m_currMembers.pop_back();
this->m_currMemberScope.pop_back();
};
auto startOffset = this->m_currOffset;
this->m_currRecursionDepth++;
if (this->m_currRecursionDepth > this->m_recursionLimit)
this->getConsole().abortEvaluation(hex::format("evaluation depth exceeds maximum of {0}. Use #pragma eval_depth <depth> to increase the maximum", this->m_recursionLimit));
for (auto &member : node->getMembers()) {
this->evaluateMember(member, memberPatterns, false);
unionPattern->setMembers(memberPatterns);
}
this->m_currRecursionDepth--;
size_t size = 0;
for (const auto &pattern : memberPatterns)
size = std::max(size, pattern->getSize());
unionPattern->setSize(size);
this->m_currOffset += size;
return this->evaluateAttributes(node, unionPattern);
}
PatternData* Evaluator::evaluateEnum(ASTNodeEnum *node) {
std::vector<std::pair<Token::IntegerLiteral, std::string>> entryPatterns;
auto underlyingType = dynamic_cast<ASTNodeTypeDecl*>(node->getUnderlyingType());
if (underlyingType == nullptr)
this->getConsole().abortEvaluation("enum underlying type was not ASTNodeTypeDecl. This is a bug");
size_t size;
auto builtinUnderlyingType = dynamic_cast<ASTNodeBuiltinType*>(underlyingType->getType());
if (builtinUnderlyingType != nullptr)
size = Token::getTypeSize(builtinUnderlyingType->getType());
else
this->getConsole().abortEvaluation("invalid enum underlying type");
auto startOffset = this->m_currOffset;
for (auto &[name, value] : node->getEntries()) {
auto expression = dynamic_cast<ASTNodeNumericExpression*>(value);
if (expression == nullptr)
this->getConsole().abortEvaluation("invalid expression in enum value");
auto valueNode = evaluateMathematicalExpression(expression);
ON_SCOPE_EXIT { delete valueNode; };
entryPatterns.emplace_back(valueNode->getValue(), name);
}
this->m_currOffset += size;
auto enumPattern = new PatternDataEnum(startOffset, size);
enumPattern->setSize(size);
enumPattern->setEnumValues(entryPatterns);
return this->evaluateAttributes(node, enumPattern);
}
PatternData* Evaluator::evaluateBitfield(ASTNodeBitfield *node) {
std::vector<PatternData*> entryPatterns;
auto startOffset = this->m_currOffset;
size_t bits = 0;
for (auto &[name, value] : node->getEntries()) {
auto expression = dynamic_cast<ASTNodeNumericExpression*>(value);
if (expression == nullptr)
this->getConsole().abortEvaluation("invalid expression in bitfield field size");
auto valueNode = evaluateMathematicalExpression(expression);
ON_SCOPE_EXIT { delete valueNode; };
auto fieldBits = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<s128>(value);
}, valueNode->getValue());
if (fieldBits > 64 || fieldBits <= 0)
this->getConsole().abortEvaluation("bitfield entry must occupy between 1 and 64 bits");
auto fieldPattern = new PatternDataBitfieldField(startOffset, bits, fieldBits);
fieldPattern->setVariableName(name);
entryPatterns.push_back(fieldPattern);
bits += fieldBits;
}
size_t size = (bits + 7) / 8;
this->m_currOffset += size;
auto bitfieldPattern = new PatternDataBitfield(startOffset, size);
bitfieldPattern->setFields(entryPatterns);
return this->evaluateAttributes(node, bitfieldPattern);
}
PatternData* Evaluator::evaluateType(ASTNodeTypeDecl *node) {
auto type = node->getType();
if (type == nullptr)
type = this->m_types[node->getName().data()];
this->m_endianStack.push_back(node->getEndian().value_or(this->m_defaultDataEndian));
PatternData *pattern;
if (auto builtinTypeNode = dynamic_cast<ASTNodeBuiltinType*>(type); builtinTypeNode != nullptr)
return this->evaluateBuiltinType(builtinTypeNode);
else if (auto typeDeclNode = dynamic_cast<ASTNodeTypeDecl*>(type); typeDeclNode != nullptr)
pattern = this->evaluateType(typeDeclNode);
else if (auto structNode = dynamic_cast<ASTNodeStruct*>(type); structNode != nullptr)
pattern = this->evaluateStruct(structNode);
else if (auto unionNode = dynamic_cast<ASTNodeUnion*>(type); unionNode != nullptr)
pattern = this->evaluateUnion(unionNode);
else if (auto enumNode = dynamic_cast<ASTNodeEnum*>(type); enumNode != nullptr)
pattern = this->evaluateEnum(enumNode);
else if (auto bitfieldNode = dynamic_cast<ASTNodeBitfield*>(type); bitfieldNode != nullptr)
pattern = this->evaluateBitfield(bitfieldNode);
else
this->getConsole().abortEvaluation("type could not be evaluated");
if (!node->getName().empty())
pattern->setTypeName(node->getName().data());
pattern->setEndian(this->getCurrentEndian());
this->m_endianStack.pop_back();
return pattern;
}
PatternData* Evaluator::evaluateVariable(ASTNodeVariableDecl *node) {
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
ON_SCOPE_EXIT { delete valueNode; };
this->m_currOffset = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<u64>(value);
}, valueNode->getValue());
}
if (this->m_currOffset < this->m_provider->getBaseAddress() || this->m_currOffset >= this->m_provider->getActualSize() + this->m_provider->getBaseAddress()) {
if (node->getPlacementOffset() != nullptr)
this->getConsole().abortEvaluation("variable placed out of range");
else
return nullptr;
}
PatternData *pattern;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
pattern = this->evaluateType(typeDecl);
else if (auto builtinTypeDecl = dynamic_cast<ASTNodeBuiltinType*>(node->getType()); builtinTypeDecl != nullptr)
pattern = this->evaluateBuiltinType(builtinTypeDecl);
else
this->getConsole().abortEvaluation("ASTNodeVariableDecl had an invalid type. This is a bug!");
pattern->setVariableName(node->getName().data());
return this->evaluateAttributes(node, pattern);
}
PatternData* Evaluator::evaluateArray(ASTNodeArrayVariableDecl *node) {
// Evaluate placement of array
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
ON_SCOPE_EXIT { delete valueNode; };
this->m_currOffset = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<u64>(value);
}, valueNode->getValue());
}
// Check if placed in range of the data
if (this->m_currOffset < this->m_provider->getBaseAddress() || this->m_currOffset >= this->m_provider->getActualSize() + this->m_provider->getBaseAddress()) {
if (node->getPlacementOffset() != nullptr)
this->getConsole().abortEvaluation("variable placed out of range");
else
return nullptr;
}
auto type = static_cast<ASTNodeTypeDecl*>(node->getType())->getType();
if (dynamic_cast<ASTNodeBuiltinType*>(type) != nullptr)
return this->evaluateStaticArray(node);
auto attributes = dynamic_cast<Attributable*>(type)->getAttributes();
bool isStaticType = std::any_of(attributes.begin(), attributes.end(), [](ASTNodeAttribute *attribute) {
return attribute->getAttribute() == "static" && !attribute->getValue().has_value();
});
if (isStaticType)
return this->evaluateStaticArray(node);
else
return this->evaluateDynamicArray(node);
}
PatternData* Evaluator::evaluateStaticArray(ASTNodeArrayVariableDecl *node) {
std::optional<u32> color;
ssize_t arraySize = 0;
auto startOffset = this->m_currOffset;
PatternData *templatePattern;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
templatePattern = this->evaluateType(typeDecl);
else if (auto builtinTypeDecl = dynamic_cast<ASTNodeBuiltinType*>(node->getType()); builtinTypeDecl != nullptr)
templatePattern = this->evaluateBuiltinType(builtinTypeDecl);
else
this->getConsole().abortEvaluation("ASTNodeVariableDecl had an invalid type. This is a bug!");
auto entrySize = this->m_currOffset - startOffset;
ON_SCOPE_EXIT { delete templatePattern; };
auto sizeNode = node->getSize();
if (auto numericExpression = dynamic_cast<ASTNodeNumericExpression*>(sizeNode); numericExpression != nullptr) {
// Parse explicit size of array
auto valueNode = this->evaluateMathematicalExpression(numericExpression);
ON_SCOPE_EXIT { delete valueNode; };
arraySize = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<u64>(value);
}, valueNode->getValue());
} else if (auto whileLoopExpression = dynamic_cast<ASTNodeWhileStatement*>(sizeNode); whileLoopExpression != nullptr) {
// Parse while loop based size of array
auto conditionNode = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(whileLoopExpression->getCondition()));
ON_SCOPE_EXIT { delete conditionNode; };
while (std::visit([](auto &&value) { return value != 0; }, conditionNode->getValue())) {
arraySize++;
delete conditionNode;
conditionNode = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(whileLoopExpression->getCondition()));
}
} else {
// Parse unsized array
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr) {
if (auto builtinType = dynamic_cast<ASTNodeBuiltinType*>(typeDecl->getType()); builtinType != nullptr) {
std::vector<u8> bytes(Token::getTypeSize(builtinType->getType()), 0x00);
u64 offset = startOffset;
do {
this->m_provider->read(offset, bytes.data(), bytes.size());
offset += bytes.size();
arraySize++;
} while (!std::all_of(bytes.begin(), bytes.end(), [](u8 byte){ return byte == 0x00; }) && offset < this->m_provider->getSize());
}
}
}
if (arraySize < 0)
this->getConsole().abortEvaluation("array size cannot be negative");
PatternData *pattern;
if (dynamic_cast<PatternDataCharacter*>(templatePattern) != nullptr)
pattern = new PatternDataString(startOffset, entrySize * arraySize, color.value_or(0));
else if (dynamic_cast<PatternDataCharacter16*>(templatePattern) != nullptr)
pattern = new PatternDataString16(startOffset, entrySize * arraySize, color.value_or(0));
else if (dynamic_cast<PatternDataPadding*>(templatePattern) != nullptr)
pattern = new PatternDataPadding(startOffset, entrySize * arraySize);
else {
auto arrayPattern = new PatternDataStaticArray(startOffset, entrySize * arraySize, color.value_or(0));
arrayPattern->setTypeName(templatePattern->getTypeName());
arrayPattern->setEntries(templatePattern->clone(), arraySize);
pattern = arrayPattern;
}
pattern->setVariableName(node->getName().data());
pattern->setEndian(this->getCurrentEndian());
this->m_currOffset = startOffset + entrySize * arraySize;
return this->evaluateAttributes(node, pattern);
}
PatternData* Evaluator::evaluateDynamicArray(ASTNodeArrayVariableDecl *node) {
auto startOffset = this->m_currOffset;
std::vector<PatternData*> entries;
std::optional<u32> color;
auto addEntry = [this, node, &entries, &color](u64 index) {
PatternData *entry;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
entry = this->evaluateType(typeDecl);
else
this->getConsole().abortEvaluation("ASTNodeVariableDecl had an invalid type. This is a bug!");
entry->setVariableName(hex::format("[{0}]", index));
entry->setEndian(this->getCurrentEndian());
if (!color.has_value())
color = entry->getColor();
entry->setColor(color.value_or(0));
if (this->m_currOffset > this->m_provider->getActualSize() + this->m_provider->getBaseAddress()) {
delete entry;
return;
}
entries.push_back(entry);
};
auto sizeNode = node->getSize();
if (auto numericExpression = dynamic_cast<ASTNodeNumericExpression*>(sizeNode); numericExpression != nullptr) {
// Parse explicit size of array
auto valueNode = this->evaluateMathematicalExpression(numericExpression);
ON_SCOPE_EXIT { delete valueNode; };
auto arraySize = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<ssize_t>(value);
}, valueNode->getValue());
if (arraySize < 0)
this->getConsole().abortEvaluation("array size cannot be negative");
for (u64 i = 0; i < arraySize; i++) {
addEntry(i);
}
} else if (auto whileLoopExpression = dynamic_cast<ASTNodeWhileStatement*>(sizeNode); whileLoopExpression != nullptr) {
// Parse while loop based size of array
auto conditionNode = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(whileLoopExpression->getCondition()));
ON_SCOPE_EXIT { delete conditionNode; };
u64 index = 0;
while (std::visit([](auto &&value) { return value != 0; }, conditionNode->getValue())) {
addEntry(index);
index++;
delete conditionNode;
conditionNode = this->evaluateMathematicalExpression(static_cast<ASTNodeNumericExpression*>(whileLoopExpression->getCondition()));
}
}
auto deleteEntries = SCOPE_GUARD {
for (auto &entry : entries)
delete entry;
};
if (node->getSize() == nullptr)
this->getConsole().abortEvaluation("no bounds provided for array");
auto pattern = new PatternDataDynamicArray(startOffset, (this->m_currOffset - startOffset), color.value_or(0));
deleteEntries.release();
pattern->setEntries(entries);
pattern->setVariableName(node->getName().data());
pattern->setEndian(this->getCurrentEndian());
return this->evaluateAttributes(node, pattern);
}
PatternData* Evaluator::evaluatePointer(ASTNodePointerVariableDecl *node) {
s128 pointerOffset;
if (auto offset = dynamic_cast<ASTNodeNumericExpression*>(node->getPlacementOffset()); offset != nullptr) {
auto valueNode = evaluateMathematicalExpression(offset);
ON_SCOPE_EXIT { delete valueNode; };
pointerOffset = std::visit([this] (auto &&value) {
using Type = std::remove_cvref_t<decltype(value)>;
if constexpr (std::is_floating_point_v<Type>)
this->getConsole().abortEvaluation("bitfield entry size must be an integer value");
return static_cast<s128>(value);
}, valueNode->getValue());
this->m_currOffset = pointerOffset;
} else {
pointerOffset = this->m_currOffset;
}
if (this->m_currOffset < this->m_provider->getBaseAddress() || this->m_currOffset >= this->m_provider->getActualSize() + this->m_provider->getBaseAddress()) {
if (node->getPlacementOffset() != nullptr)
this->getConsole().abortEvaluation("variable placed out of range");
else
return nullptr;
}
PatternData *sizeType;
auto underlyingType = dynamic_cast<ASTNodeTypeDecl*>(node->getSizeType());
if (underlyingType == nullptr)
this->getConsole().abortEvaluation("underlying type is not ASTNodeTypeDecl. This is a bug");
if (auto builtinTypeNode = dynamic_cast<ASTNodeBuiltinType*>(underlyingType->getType()); builtinTypeNode != nullptr) {
sizeType = evaluateBuiltinType(builtinTypeNode);
} else
this->getConsole().abortEvaluation("pointer size is not a builtin type");
size_t pointerSize = sizeType->getSize();
u128 pointedAtOffset = 0;
this->m_provider->read(pointerOffset, &pointedAtOffset, pointerSize);
this->m_currOffset = hex::changeEndianess(pointedAtOffset, pointerSize, underlyingType->getEndian().value_or(this->m_defaultDataEndian));
delete sizeType;
if (this->m_currOffset > this->m_provider->getActualSize() + this->m_provider->getBaseAddress())
this->getConsole().abortEvaluation("pointer points past the end of the data");
PatternData *pointedAt;
if (auto typeDecl = dynamic_cast<ASTNodeTypeDecl*>(node->getType()); typeDecl != nullptr)
pointedAt = this->evaluateType(typeDecl);
else if (auto builtinTypeDecl = dynamic_cast<ASTNodeBuiltinType*>(node->getType()); builtinTypeDecl != nullptr)
pointedAt = this->evaluateBuiltinType(builtinTypeDecl);
else
this->getConsole().abortEvaluation("ASTNodeVariableDecl had an invalid type. This is a bug!");
this->m_currOffset = pointerOffset + pointerSize;
auto pattern = new PatternDataPointer(pointerOffset, pointerSize);
pattern->setVariableName(node->getName().data());
pattern->setEndian(this->getCurrentEndian());
pattern->setPointedAtPattern(pointedAt);
return this->evaluateAttributes(node, pattern);
}
std::optional<std::vector<PatternData*>> Evaluator::evaluate(const std::vector<ASTNode *> &ast) {
this->m_globalMembers.clear();
this->m_types.clear();
this->m_endianStack.clear();
this->m_definedFunctions.clear();
this->m_currOffset = 0;
try {
for (const auto& node : ast) {
if (auto typeDeclNode = dynamic_cast<ASTNodeTypeDecl*>(node); typeDeclNode != nullptr) {
if (this->m_types[typeDeclNode->getName().data()] == nullptr)
this->m_types[typeDeclNode->getName().data()] = typeDeclNode->getType();
}
}
for (const auto& [name, node] : this->m_types) {
if (auto typeDeclNode = static_cast<ASTNodeTypeDecl*>(node); typeDeclNode->getType() == nullptr)
this->getConsole().abortEvaluation(hex::format("unresolved type '{}'", name));
}
for (const auto& node : ast) {
this->m_currMembers.clear();
this->m_currMemberScope.clear();
this->m_currMemberScope.push_back(nullptr);
this->m_endianStack.push_back(this->m_defaultDataEndian);
this->m_currRecursionDepth = 0;
PatternData *pattern = nullptr;
if (auto variableDeclNode = dynamic_cast<ASTNodeVariableDecl*>(node); variableDeclNode != nullptr) {
pattern = this->evaluateVariable(variableDeclNode);
} else if (auto arrayDeclNode = dynamic_cast<ASTNodeArrayVariableDecl*>(node); arrayDeclNode != nullptr) {
pattern = this->evaluateArray(arrayDeclNode);
} else if (auto pointerDeclNode = dynamic_cast<ASTNodePointerVariableDecl*>(node); pointerDeclNode != nullptr) {
pattern = this->evaluatePointer(pointerDeclNode);
} else if (auto typeDeclNode = dynamic_cast<ASTNodeTypeDecl*>(node); typeDeclNode != nullptr) {
// Handled above
} else if (auto functionCallNode = dynamic_cast<ASTNodeFunctionCall*>(node); functionCallNode != nullptr) {
auto result = this->evaluateFunctionCall(functionCallNode);
delete result;
} else if (auto functionDefNode = dynamic_cast<ASTNodeFunctionDefinition*>(node); functionDefNode != nullptr) {
this->evaluateFunctionDefinition(functionDefNode);
}
if (pattern != nullptr)
this->m_globalMembers.push_back(pattern);
this->m_endianStack.clear();
}
} catch (LogConsole::EvaluateError &e) {
this->getConsole().log(LogConsole::Level::Error, e);
return { };
}
return this->m_globalMembers;
}
}