1
0
mirror of synced 2024-12-14 16:52:53 +01:00
ImHex/plugins/builtin/source/content/tools/ieee_decoder.cpp
2024-02-24 23:34:29 +01:00

712 lines
31 KiB
C++

#include <hex/api/content_registry.hpp>
#include <hex/api/localization_manager.hpp>
#include <hex/helpers/utils.hpp>
#include <imgui.h>
#include <hex/ui/imgui_imhex_extensions.h>
namespace hex::plugin::builtin {
// Tool for converting between different number formats.
// There are three places where input can be changed; the bit checkboxes, the hex input, and the decimal input.
// The bit checkboxes and the hex input are directly related and can be converted between each other easily.
// The decimal input is a bit more complicated. IEEE 754 floating point numbers are represented as a sign bit,
// an exponent and a mantissa. For details see https://en.wikipedia.org/wiki/IEEE_754.
// Workflow is as follows:
// From the bit checkboxes determine the integer hex value. This is straightforward.
// From the hex value determine the binary floating point value by extracting the sign, exponent, and mantissa.
// From the binary floating point value determine the decimal floating point value using a third party library.
// From the decimal floating point we reconstruct the binary floating point value using internal hardware.
// If the format is non-standard, the reconstruction is done using properties of the format.
void drawIEEE754Decoder() {
constexpr static auto flags = ImGuiInputTextFlags_EnterReturnsTrue;
class IEEE754STATICS {
public:
IEEE754STATICS() {
value = 0;
exponentBitCount = 8;
mantissaBitCount = 23;
resultFloat = 0;
}
u128 value;
i32 exponentBitCount;
i32 mantissaBitCount;
long double resultFloat;
};
static IEEE754STATICS ieee754statics;
enum class NumberType {
Normal,
Zero,
Denormal,
Infinity,
NaN,
};
enum class InputType {
Infinity,
NotANumber,
QuietNotANumber,
SignalingNotANumber,
Regular,
Invalid
};
enum class ValueType {
Regular,
SignalingNaN,
QuietNaN,
NegativeInfinity,
PositiveInfinity,
};
class IEEE754 {
public:
ValueType valueType;
NumberType numberType;
i64 exponentBias;
long double signValue;
long double exponentValue;
long double mantissaValue;
i64 signBits;
i64 exponentBits;
i64 mantissaBits;
i64 precision;
} ieee754 = {};
std::string specialNumbers[] = {
"inf" , "Inf", "INF" , "nan" , "Nan" , "NAN",
"qnan","Qnan", "QNAN", "snan", "Snan", "SNAN"
};
const auto totalBitCount = ieee754statics.exponentBitCount + ieee754statics.mantissaBitCount;
const auto signBitPosition = totalBitCount - 0;
const auto exponentBitPosition = totalBitCount - 1;
const auto mantissaBitPosition = totalBitCount - 1 - ieee754statics.exponentBitCount;
const static auto ExtractBits = [](u32 startBit, u32 count) {
return hex::extract(startBit, startBit - (count - 1), ieee754statics.value);
};
ieee754.signBits = ExtractBits(signBitPosition, 1);
ieee754.exponentBits = ExtractBits(exponentBitPosition, ieee754statics.exponentBitCount);
ieee754.mantissaBits = ExtractBits(mantissaBitPosition, ieee754statics.mantissaBitCount);
static i64 inputFieldWidth = 0;
ImGuiExt::TextFormattedWrapped("{}", "hex.builtin.tools.ieee754.description"_lang);
ImGui::NewLine();
static i64 displayMode = ContentRegistry::Settings::read<int>("hex.builtin.tools.ieee754.settings", "display_mode", 0);
i64 displayModeTemp = displayMode;
ImGui::RadioButton("hex.builtin.tools.ieee754.settings.display_mode.detailed"_lang, reinterpret_cast<int *>(&displayMode), 0);
ImGui::SameLine();
ImGui::RadioButton("hex.builtin.tools.ieee754.settings.display_mode.simplified"_lang, reinterpret_cast<int *>(&displayMode), 1);
if (displayModeTemp != displayMode) {
ContentRegistry::Settings::write<int>("hex.builtin.tools.ieee754.settings", "display_mode", displayMode);
displayModeTemp = displayMode;
}
auto tableFlags = ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_NoKeepColumnsVisible |
ImGuiTableFlags_ScrollX | ImGuiTableFlags_NoPadInnerX;
const static auto IndentBoxOrLabel = [](u32 startBit, u32 bitIndex, u32 count, bool isLabel) {
auto checkBoxWidth = ImGui::CalcTextSize("0").x + ImGui::GetStyle().FramePadding.x * 2.0F;
auto columnWidth = ImGui::GetColumnWidth();
float boxesPerColumn=columnWidth/checkBoxWidth;
float result;
if (isLabel) {
std::string labelString = fmt::format("{}", bitIndex);
auto labelWidth = ImGui::CalcTextSize(labelString.c_str()).x;
auto leadingBoxes = (boxesPerColumn-count) / 2.0F;
if (leadingBoxes < 0.0F)
leadingBoxes = 0.0F;
result = checkBoxWidth*(leadingBoxes + startBit - bitIndex + 0.5F) - labelWidth / 2.0F;
} else {
if (count < boxesPerColumn)
result = (columnWidth - count * checkBoxWidth) / 2.0F;
else
result = 0.0F;
}
if (result <= 0.0F)
result = 0.05F;
return result;
};
const static auto DisplayBitLabels = [](int startBit, int count) {
static i32 lastLabelAdded = -1;
i32 labelIndex;
if (lastLabelAdded == -1 || count < 4)
labelIndex = startBit - (count >> 1);
else
labelIndex = lastLabelAdded - 4;
while (labelIndex + count > startBit) {
auto indentSize = IndentBoxOrLabel(startBit, labelIndex, count, true);
ImGui::Indent(indentSize );
ImGuiExt::TextFormatted("{}", labelIndex);
lastLabelAdded = labelIndex;
ImGui::Unindent(indentSize );
labelIndex -= 4;
ImGui::SameLine();
}
};
const static auto FormatBitLabels = [](i32 totalBitCount, i32 exponentBitPosition, i32 mantissaBitPosition) {
// Row for bit labels. Due to font size constrains each bit cannot have its own label.
// Instead, we label each 4 bits and then use the bit position to determine the bit label.
// Result.
ImGui::TableNextColumn();
// Equals.
ImGui::TableNextColumn();
// Sign bit label is always shown.
ImGui::TableNextColumn();
DisplayBitLabels(totalBitCount + 1, 1);
// Times.
ImGui::TableNextColumn();
// Exponent.
ImGui::TableNextColumn();
DisplayBitLabels(exponentBitPosition + 1, ieee754statics.exponentBitCount);
// Times.
ImGui::TableNextColumn();
// Mantissa.
ImGui::TableNextColumn();
DisplayBitLabels(mantissaBitPosition + 1, ieee754statics.mantissaBitCount);
};
const static auto BitCheckbox = [](u8 bit) {
bool checkbox = false;
ImGui::PushStyleVar(ImGuiStyleVar_FrameBorderSize, 1.0F);
checkbox = (ieee754statics.value & (u128(1) << bit)) != 0;
ImGuiExt::BitCheckbox("##checkbox", &checkbox);
ieee754statics.value = (ieee754statics.value & ~(u128(1) << bit)) | (u128(checkbox) << bit);
ImGui::PopStyleVar();
};
const static auto BitCheckboxes = [](u32 startBit, u32 count) {
for (u32 i = 0; i < count; i++) {
ImGui::PushID(startBit - i);
BitCheckbox(startBit - i);
ImGui::SameLine(0, 0);
ImGui::PopID();
}
};
const static auto FormatBits = [](i32 signBitPosition, i32 exponentBitPosition, i32 mantissaBitPosition) {
// Sign.
ImGui::TableNextColumn();
ImVec4 signColor = ImGuiExt::GetCustomColorVec4(ImGuiCustomCol_IEEEToolSign);
ImVec4 expColor = ImGuiExt::GetCustomColorVec4(ImGuiCustomCol_IEEEToolExp);
ImVec4 mantColor = ImGuiExt::GetCustomColorVec4(ImGuiCustomCol_IEEEToolMantissa);
ImVec4 black = ImVec4(0.0, 0.0, 0.0, 1.0);
float indent = IndentBoxOrLabel(signBitPosition,signBitPosition, 1, false);
ImGui::Indent(indent);
ImGui::PushStyleColor(ImGuiCol_FrameBg, signColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(signBitPosition, 1);
ImGui::PopStyleColor();
ImGui::PopStyleColor();
ImGui::Unindent(indent);
// Times.
ImGui::TableNextColumn();
// Exponent.
ImGui::TableNextColumn();
indent = IndentBoxOrLabel(exponentBitPosition,exponentBitPosition, ieee754statics.exponentBitCount, false);
ImGui::Indent(indent);
ImGui::PushStyleColor(ImGuiCol_FrameBg, expColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(exponentBitPosition, ieee754statics.exponentBitCount);
ImGui::PopStyleColor();
ImGui::PopStyleColor();
ImGui::Unindent(indent);
// Times.
ImGui::TableNextColumn();
// Mantissa.
ImGui::TableNextColumn();
indent = IndentBoxOrLabel(mantissaBitPosition,mantissaBitPosition, ieee754statics.mantissaBitCount, false);
ImGui::Indent(indent);
ImGui::PushStyleColor(ImGuiCol_FrameBg, mantColor);
ImGui::PushStyleColor(ImGuiCol_Border, black);
BitCheckboxes(mantissaBitPosition, ieee754statics.mantissaBitCount);
ImGui::PopStyleColor();
ImGui::PopStyleColor();
ImGui::Unindent(indent);
};
const static auto BitsToFloat = [](IEEE754 &ieee754) {
// Zero or denormal.
if (ieee754.exponentBits == 0) {
// Result doesn't fit in 128 bits.
if ((ieee754.exponentBias - 1) > 128) {
ieee754.exponentValue = std::pow(2.0L, static_cast<long double>(-ieee754.exponentBias + 1));
} else {
if (ieee754.exponentBias == 0) {
// Exponent is zero.
if (ieee754.mantissaBits == 0)
ieee754.exponentValue = 1.0;
else
// Exponent is one.
ieee754.exponentValue = 2.0;
} else {
ieee754.exponentValue = 1.0 / static_cast<long double>(u128(1) << (ieee754.exponentBias - 1));
}
}
}
// Normal.
else {
// Result doesn't fit in 128 bits.
if (std::abs(ieee754.exponentBits - ieee754.exponentBias) > 128) {
ieee754.exponentValue = std::pow(2.0L, static_cast<long double>(ieee754.exponentBits - ieee754.exponentBias));
}
//Result fits in 128 bits.
else {
// Exponent is positive.
if (ieee754.exponentBits > ieee754.exponentBias)
ieee754.exponentValue = static_cast<long double>(u128(1) << (ieee754.exponentBits - ieee754.exponentBias));
// Exponent is negative.
else if (ieee754.exponentBits < ieee754.exponentBias)
ieee754.exponentValue = 1.0 / static_cast<long double>(u128(1) << (ieee754.exponentBias - ieee754.exponentBits));
// Exponent is zero.
else ieee754.exponentValue = 1.0;
}
}
ieee754.mantissaValue = static_cast<long double>(ieee754.mantissaBits) / static_cast<long double>(u128(1) << (ieee754statics.mantissaBitCount));
if (ieee754.exponentBits != 0)
ieee754.mantissaValue += 1.0;
// Check if all exponent bits are set.
if (std::popcount(static_cast<u64>(ieee754.exponentBits)) == static_cast<i64>(ieee754statics.exponentBitCount)) {
// If fraction is zero number is infinity,
if (ieee754.mantissaBits == 0) {
if (ieee754.signBits == 0) {
ieee754.valueType = ValueType::PositiveInfinity;
ieee754statics.resultFloat = std::numeric_limits<long double>::infinity();
} else {
ieee754.valueType = ValueType::NegativeInfinity;
ieee754statics.resultFloat = -std::numeric_limits<long double>::infinity();
}
ieee754.numberType = NumberType::Infinity;
// otherwise number is NaN.
} else {
if (ieee754.mantissaBits & (u128(1) << (ieee754statics.mantissaBitCount - 1))) {
ieee754.valueType = ValueType::QuietNaN;
ieee754statics.resultFloat = std::numeric_limits<long double>::quiet_NaN();
} else {
ieee754.valueType = ValueType::SignalingNaN;
ieee754statics.resultFloat = std::numeric_limits<long double>::signaling_NaN();
}
ieee754.numberType = NumberType::NaN;
}
// If all exponent bits are zero, but we have a non-zero fraction
// then the number is denormal which are smaller than regular numbers
// but not as precise.
} else if (ieee754.exponentBits == 0 && ieee754.mantissaBits != 0) {
ieee754.numberType = NumberType::Denormal;
ieee754.valueType = ValueType::Regular;
ieee754statics.resultFloat = ieee754.signValue * ieee754.exponentValue * ieee754.mantissaValue;
} else {
ieee754.numberType = NumberType::Normal;
ieee754.valueType = ValueType::Regular;
ieee754statics.resultFloat = ieee754.signValue * ieee754.exponentValue * ieee754.mantissaValue;
}
};
const static auto FloatToBits = [&specialNumbers](IEEE754 &ieee754, std::string decimalFloatingPointNumberString, int totalBitCount) {
// Always obtain sign first.
if (decimalFloatingPointNumberString[0] == '-') {
// And remove it from the string.
ieee754.signBits = 1;
decimalFloatingPointNumberString.erase(0, 1);
} else {
// Important to switch from - to +.
ieee754.signBits = 0;
}
InputType inputType = InputType::Regular;
bool matchFound = false;
// Detect and use special numbers.
for (u32 i = 0; i < 12; i++) {
if (decimalFloatingPointNumberString == specialNumbers[i]) {
inputType = InputType(i/3);
matchFound = true;
break;
}
}
if (!matchFound)
inputType = InputType::Regular;
if (inputType == InputType::Regular) {
try {
ieee754statics.resultFloat = stod(decimalFloatingPointNumberString);
} catch(const std::invalid_argument& _) {
inputType = InputType::Invalid;
}
} else if (inputType == InputType::Infinity) {
ieee754statics.resultFloat = std::numeric_limits<long double>::infinity();
ieee754statics.resultFloat *= (ieee754.signBits == 1 ? -1 : 1);
} else if (inputType == InputType::NotANumber) {
ieee754statics.resultFloat = std::numeric_limits<long double>::quiet_NaN();
} else if (inputType == InputType::QuietNotANumber) {
ieee754statics.resultFloat = std::numeric_limits<long double>::quiet_NaN();
} else if (inputType == InputType::SignalingNotANumber) {
ieee754statics.resultFloat = std::numeric_limits<long double>::signaling_NaN();
}
if (inputType != InputType::Invalid) {
// Deal with zero first so we can use log2.
if (ieee754statics.resultFloat == 0.0) {
if (ieee754.signBits == 1)
ieee754statics.resultFloat = -0.0;
else
ieee754statics.resultFloat = 0.0;
ieee754.numberType = NumberType::Zero;
ieee754.valueType = ValueType::Regular;
ieee754.exponentBits = 0;
ieee754.mantissaBits = 0;
} else {
long double log2Result = std::log2(ieee754statics.resultFloat);
// 2^(bias+1)-2^(bias-prec) is the largest number that can be represented.
// If the number entered is larger than this then the input is set to infinity.
if (ieee754statics.resultFloat > (std::pow(2.0L, ieee754.exponentBias + 1) - std::pow(2.0L, ieee754.exponentBias - ieee754statics.mantissaBitCount)) || inputType == InputType::Infinity ) {
ieee754statics.resultFloat = std::numeric_limits<long double>::infinity();
ieee754.numberType = NumberType::Infinity;
ieee754.valueType = ieee754.signBits == 1 ? ValueType::NegativeInfinity : ValueType::PositiveInfinity;
ieee754.exponentBits = (u128(1) << ieee754statics.exponentBitCount) - 1;
ieee754.mantissaBits = 0;
} else if (-std::rint(log2Result) > ieee754.exponentBias + ieee754statics.mantissaBitCount - 1) {
// 1/2^(bias-1+prec) is the smallest number that can be represented.
// If the number entered is smaller than this then the input is set to zero.
if (ieee754.signBits == 1)
ieee754statics.resultFloat = -0.0;
else
ieee754statics.resultFloat = 0.0;
ieee754.numberType = NumberType::Zero;
ieee754.valueType = ValueType::Regular;
ieee754.exponentBits = 0;
ieee754.mantissaBits = 0;
} else if (inputType == InputType::SignalingNotANumber) {
ieee754statics.resultFloat = std::numeric_limits<long double>::signaling_NaN();
ieee754.valueType = ValueType::SignalingNaN;
ieee754.numberType = NumberType::NaN;
ieee754.exponentBits = (u128(1) << ieee754statics.exponentBitCount) - 1;
ieee754.mantissaBits = 1;
} else if (inputType == InputType::QuietNotANumber || inputType == InputType::NotANumber ) {
ieee754statics.resultFloat = std::numeric_limits<long double>::quiet_NaN();
ieee754.valueType = ValueType::QuietNaN;
ieee754.numberType = NumberType::NaN;
ieee754.exponentBits = (u128(1) << ieee754statics.exponentBitCount) - 1;
ieee754.mantissaBits = (u128(1) << (ieee754statics.mantissaBitCount - 1));
} else if (static_cast<i64>(std::floor(log2Result)) + ieee754.exponentBias <= 0) {
ieee754.numberType = NumberType::Denormal;
ieee754.valueType = ValueType::Regular;
ieee754.exponentBits = 0;
auto mantissaExp = log2Result + ieee754.exponentBias + ieee754statics.mantissaBitCount - 1;
ieee754.mantissaBits = static_cast<i64>(std::round(std::pow(2.0L, mantissaExp)));
} else {
ieee754.valueType = ValueType::Regular;
ieee754.numberType = NumberType::Normal;
i64 unBiasedExponent = static_cast<i64>(std::floor(log2Result));
ieee754.exponentBits = unBiasedExponent + ieee754.exponentBias;
ieee754.mantissaValue = ieee754statics.resultFloat * std::pow(2.0L, -unBiasedExponent) - 1;
ieee754.mantissaBits = static_cast<i64>(std::round( static_cast<long double>(u128(1) << (ieee754statics.mantissaBitCount)) * ieee754.mantissaValue));
}
}
// Put the bits together.
ieee754statics.value = (ieee754.signBits << (totalBitCount)) | (ieee754.exponentBits << (totalBitCount - ieee754statics.exponentBitCount)) | ieee754.mantissaBits;
}
};
const static auto DisplayDecimal = [](IEEE754 &ieee754) {
unsigned signColorU32 = ImGuiExt::GetCustomColorU32(ImGuiCustomCol_IEEEToolSign);
unsigned expColorU32 = ImGuiExt::GetCustomColorU32(ImGuiCustomCol_IEEEToolExp);
unsigned mantColorU32 = ImGuiExt::GetCustomColorU32(ImGuiCustomCol_IEEEToolMantissa);
ImGui::TableNextColumn();
ImGui::Text("=");
// Sign.
ImGui::TableNextColumn();
// This has the effect of dimming the color of the numbers so user doesn't try
// to interact with them.
ImVec4 textColor = ImGui::GetStyleColorVec4(ImGuiCol_Text);
ImGui::BeginDisabled();
ImGui::PushStyleColor(ImGuiCol_Text, textColor);
ImGui::Indent(10_scaled);
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, signColorU32);
if (ieee754.signBits == 1)
ImGui::Text("-1");
else
ImGui::Text("+1");
ImGui::Unindent(10_scaled);
// Times.
ImGui::TableNextColumn();
ImGui::Text("x");
ImGui::TableNextColumn();
// Exponent.
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, expColorU32);
ImGui::Indent(20_scaled);
if (ieee754.numberType == NumberType::NaN) {
if (ieee754.valueType == ValueType::QuietNaN)
ImGui::Text("qNaN");
else
ImGui::Text("sNaN");
} else if (ieee754.numberType == NumberType::Infinity) {
ImGui::Text("Inf");
} else if (ieee754.numberType == NumberType::Zero) {
ImGui::Text("0");
} else if (ieee754.numberType == NumberType::Denormal) {
ImGuiExt::TextFormatted("2^{0}", 1 - ieee754.exponentBias);
} else {
ImGuiExt::TextFormatted("2^{0}", ieee754.exponentBits - ieee754.exponentBias);
}
ImGui::Unindent(20_scaled);
// Times.
ImGui::TableNextColumn();
ImGui::Text("x");
ImGui::TableNextColumn();
// Mantissa.
ImGui::TableSetBgColor(ImGuiTableBgTarget_CellBg, mantColorU32);
ImGui::Indent(20_scaled);
ImGuiExt::TextFormatted("{:.{}}", ieee754.mantissaValue,ieee754.precision);
ImGui::Unindent(20_scaled);
ImGui::PopStyleColor();
ImGui::EndDisabled();
};
const static auto ToolMenu = [](i64 &inputFieldWidth) {
// If precision and exponent match one of the IEEE 754 formats the format is highlighted
// and remains highlighted until user changes to a different format. Matching formats occur when
// the user clicks on one of the selections or if the slider values match the format in question.
// When a new format is selected, it may have a smaller number of digits than
// the previous selection. Since the largest of the hexadecimal and the decimal
// representation widths set both field widths to the same value, we need to
// reset it here when a new choice is set.
auto exponentBitCount = ieee754statics.exponentBitCount;
auto mantissaBitCount = ieee754statics.mantissaBitCount;
if (ImGui::SliderInt("hex.builtin.tools.ieee754.exponent_size"_lang, &exponentBitCount, 1, 63 - mantissaBitCount)) {
inputFieldWidth = 0;
ieee754statics.exponentBitCount = exponentBitCount;
}
if (ImGui::SliderInt("hex.builtin.tools.ieee754.mantissa_size"_lang, &mantissaBitCount, 1, 63 - exponentBitCount)) {
inputFieldWidth = 0;
ieee754statics.mantissaBitCount = mantissaBitCount;
}
ImGui::Separator();
auto color = ImGui::GetColorU32(ImGuiCol_ButtonActive);
bool needsPop = false;
if (ieee754statics.exponentBitCount == 5 && ieee754statics.mantissaBitCount == 10) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.half_precision"_lang)) {
ieee754statics.exponentBitCount = 5;
ieee754statics.mantissaBitCount = 10;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (ieee754statics.exponentBitCount == 8 && ieee754statics.mantissaBitCount == 23) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.single_precision"_lang)) {
ieee754statics.exponentBitCount = 8;
ieee754statics.mantissaBitCount = 23;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (ieee754statics.exponentBitCount == 11 && ieee754statics.mantissaBitCount == 52) {
ImGui::PushStyleColor(ImGuiCol_Button, color);
needsPop = true;
}
if (ImGui::Button("hex.builtin.tools.ieee754.double_precision"_lang)) {
ieee754statics.exponentBitCount = 11;
ieee754statics.mantissaBitCount = 52;
inputFieldWidth = 0;
}
if (needsPop) ImGui::PopStyleColor();
ImGui::SameLine();
needsPop = false;
if (ImGui::Button("hex.builtin.tools.ieee754.clear"_lang))
// This will reset all interactive widgets to zero.
ieee754statics.value = 0;
ImGui::Separator();
ImGui::NewLine();
};
if (ImGui::BeginTable("##outer", 7, tableFlags, ImVec2(0, ImGui::GetTextLineHeightWithSpacing() * 5.5 ))) {
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.result.title"_lang);
ImGui::TableSetupColumn("##equals");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.sign"_lang);
ImGui::TableSetupColumn("##times");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.exponent"_lang);
ImGui::TableSetupColumn("##times");
ImGui::TableSetupColumn("hex.builtin.tools.ieee754.mantissa"_lang);
ImGui::TableHeadersRow();
ImGui::TableNextRow();
FormatBitLabels(totalBitCount, exponentBitPosition, mantissaBitPosition);
ImGui::TableNextRow();
// Row for bit checkboxes
// Result.
ImGui::TableNextColumn();
u64 mask = hex::bitmask(totalBitCount+1);
std::string maskString = hex::format("0x{:X} ", mask);
auto style = ImGui::GetStyle();
inputFieldWidth = std::fmax(inputFieldWidth,
ImGui::CalcTextSize(maskString.c_str()).x + style.FramePadding.x * 2.0F);
ImGui::PushItemWidth(inputFieldWidth);
u64 newValue = ieee754statics.value & mask;
if (ImGuiExt::InputHexadecimal("##hex", &newValue, flags))
ieee754statics.value = newValue;
ImGui::PopItemWidth();
// Equals.
ImGui::TableNextColumn();
ImGui::Text("=");
FormatBits(signBitPosition, exponentBitPosition, mantissaBitPosition);
ImGui::TableNextRow();
ImGui::TableNextColumn();
ieee754.exponentBias = (u128(1) << (ieee754statics.exponentBitCount - 1)) - 1;
ieee754.signValue = ieee754.signBits == 0 ? 1.0 : -1.0;
BitsToFloat(ieee754);
if (ieee754.numberType == NumberType::Denormal)
ieee754.precision = std::ceil(1+ieee754statics.mantissaBitCount * std::log10(2.0L));
else
ieee754.precision = std::ceil(1+(ieee754statics.mantissaBitCount + 1) * std::log10(2.0L));
// For C++ from_chars is better than strtold.
// The main problem is that from_chars will not process special numbers
// like inf and nan, so we handle them manually.
static std::string decimalFloatingPointNumberString;
// Use qnan for quiet NaN and snan for signaling NaN.
if (ieee754.numberType == NumberType::NaN) {
if (ieee754.valueType == ValueType::QuietNaN)
decimalFloatingPointNumberString = "qnan";
else
decimalFloatingPointNumberString = "snan";
} else {
decimalFloatingPointNumberString = fmt::format("{:.{}}", ieee754statics.resultFloat, ieee754.precision);
}
auto style1 = ImGui::GetStyle();
inputFieldWidth = std::fmax(inputFieldWidth, ImGui::CalcTextSize(decimalFloatingPointNumberString.c_str()).x + 2 * style1.FramePadding.x);
ImGui::PushItemWidth(inputFieldWidth);
// We allow any input in order to accept infinities and NaNs, all invalid entries
// are detected catching exceptions. You can also enter -0 or -inf.
if (ImGui::InputText("##resultFloat", decimalFloatingPointNumberString, flags)) {
FloatToBits(ieee754, decimalFloatingPointNumberString, totalBitCount);
}
ImGui::PopItemWidth();
if (displayMode == 0)
DisplayDecimal(ieee754);
ImGui::EndTable();
}
ToolMenu(inputFieldWidth);
}
}