1
0
mirror of synced 2024-11-15 19:43:23 +01:00
ImHex/plugins/builtin/source/content/data_processor_nodes.cpp
WerWolv 5c7a529fa1
Added Data Processor using Nodes (#152)
* Added imnodes

* Added basic data processor view. Still needs to be cleaned up

* Make sure all attached links get properly removed when a Node is deleted

* Cleanup and API exposing

* Added data provider overlays and integrate them with the data processor

* Optimized data processing

* Node UI enhancements

* Added support for all themes to the nodes editor

* Improved data processor context menus

* Fixed data processor context menu showing up everywhere

* Make hex editor context menu behave the same as data processor one

* Add different node pin types and prevent incompatible ones from being connected

* Don't require explicitly marking node as end node

* Fixed plugin copying

* Added some more nodes
2021-01-30 22:39:06 +01:00

297 lines
12 KiB
C++

#include <hex/plugin.hpp>
#include "math_evaluator.hpp"
namespace hex::plugin::builtin {
class NodeInteger : public dp::Node {
public:
NodeInteger() : Node("Integer", { dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Integer, "Value") }) {}
void drawNode() override {
ImGui::TextUnformatted("0x"); ImGui::SameLine(0, 0);
ImGui::PushItemWidth(100);
ImGui::InputScalar("##integerValue", ImGuiDataType_U64, &this->m_value, nullptr, nullptr, "%llx", ImGuiInputTextFlags_CharsHexadecimal);
ImGui::PopItemWidth();
}
void process(prv::Overlay *dataOverlay) override {
std::vector<u8> data;
data.resize(sizeof(this->m_value));
std::copy(&this->m_value, &this->m_value + 1, data.data());
this->getAttributes()[0].getOutputData() = data;
}
private:
u64 m_value = 0;
};
class NodeFloat : public dp::Node {
public:
NodeFloat() : Node("Float", { dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Float, "Value") }) {}
void drawNode() override {
ImGui::PushItemWidth(100);
ImGui::InputScalar("##floatValue", ImGuiDataType_Float, &this->m_value, nullptr, nullptr, "%f", ImGuiInputTextFlags_CharsDecimal);
ImGui::PopItemWidth();
}
void process(prv::Overlay *dataOverlay) override {
std::vector<u8> data;
data.resize(sizeof(this->m_value));
std::copy(&this->m_value, &this->m_value + 1, data.data());
this->getAttributes()[0].getOutputData() = data;
}
private:
float m_value = 0;
};
class NodeRGBA8 : public dp::Node {
public:
NodeRGBA8() : Node("RGBA8 Color", { dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Integer, "Red"),
dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Integer, "Green"),
dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Integer, "Blue"),
dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Integer, "Alpha")}) {}
void drawNode() override {
ImGui::PushItemWidth(200);
ImGui::ColorPicker4("##colorPicker", &this->m_color.Value.x, ImGuiColorEditFlags_AlphaBar);
ImGui::PopItemWidth();
}
void process(prv::Overlay *dataOverlay) override {
std::vector<u8> output(sizeof(u64), 0x00);
output[0] = this->m_color.Value.x * 0xFF;
this->getAttributes()[0].getOutputData() = output;
output[0] = this->m_color.Value.y * 0xFF;
this->getAttributes()[1].getOutputData() = output;
output[0] = this->m_color.Value.z * 0xFF;
this->getAttributes()[2].getOutputData() = output;
output[0] = this->m_color.Value.w * 0xFF;
this->getAttributes()[3].getOutputData() = output;
}
private:
ImColor m_color;
};
class NodeDisplayInteger : public dp::Node {
public:
NodeDisplayInteger() : Node("Display Integer", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Integer, "Value") }) {}
void drawNode() override {
ImGui::PushItemWidth(150);
if (this->m_value.has_value())
ImGui::Text("0x%llx", this->m_value.value());
else
ImGui::TextUnformatted("???");
ImGui::PopItemWidth();
}
void process(prv::Overlay *dataOverlay) override {
auto connectedInput = this->getConnectedInputAttribute(0);
if (connectedInput == nullptr) {
this->m_value.reset();
return;
}
connectedInput->getParentNode()->process(dataOverlay);
this->m_value = *reinterpret_cast<u64*>(connectedInput->getOutputData().data());
}
private:
std::optional<u64> m_value = 0;
};
class NodeDisplayFloat : public dp::Node {
public:
NodeDisplayFloat() : Node("Display Float", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Float, "Value") }) {}
void drawNode() override {
ImGui::PushItemWidth(150);
if (this->m_value.has_value())
ImGui::Text("%f", this->m_value.value());
else
ImGui::TextUnformatted("???");
ImGui::PopItemWidth();
}
void process(prv::Overlay *dataOverlay) override {
auto connectedInput = this->getConnectedInputAttribute(0);
if (connectedInput == nullptr) {
this->m_value.reset();
return;
}
connectedInput->getParentNode()->process(dataOverlay);
this->m_value = *reinterpret_cast<float*>(connectedInput->getOutputData().data());
}
private:
std::optional<float> m_value = 0;
};
class NodeBitwiseNOT : public dp::Node {
public:
NodeBitwiseNOT() : Node("Bitwise NOT", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input"), dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Buffer, "Output") }) {}
void process(prv::Overlay *dataOverlay) override {
auto connectedInput = this->getConnectedInputAttribute(0);
if (connectedInput == nullptr)
return;
connectedInput->getParentNode()->process(dataOverlay);
std::vector<u8> output = connectedInput->getOutputData();
for (auto &byte : output)
byte = ~byte;
}
};
class NodeBitwiseAND : public dp::Node {
public:
NodeBitwiseAND() : Node("Bitwise AND", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input A"), dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input B"), dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Buffer, "Output") }) {}
void process(prv::Overlay *dataOverlay) override {
auto connectedInputA = this->getConnectedInputAttribute(0);
auto connectedInputB = this->getConnectedInputAttribute(1);
if (connectedInputA == nullptr || connectedInputB == nullptr)
return;
connectedInputA->getParentNode()->process(dataOverlay);
connectedInputB->getParentNode()->process(dataOverlay);
std::vector<u8> inputA = connectedInputA->getOutputData();
std::vector<u8> inputB = connectedInputB->getOutputData();
std::vector<u8> output(std::min(inputA.size(), inputB.size()), 0x00);
for (u32 i = 0; i < output.size(); i++)
output[i] = inputA[i] & inputB[i];
this->getAttributes()[2].getOutputData() = output;
}
};
class NodeBitwiseOR : public dp::Node {
public:
NodeBitwiseOR() : Node("Bitwise OR", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input A"), dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input B"), dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Buffer, "Output") }) {}
void process(prv::Overlay *dataOverlay) override {
auto connectedInputA = this->getConnectedInputAttribute(0);
auto connectedInputB = this->getConnectedInputAttribute(1);
if (connectedInputA == nullptr || connectedInputB == nullptr)
return;
connectedInputA->getParentNode()->process(dataOverlay);
connectedInputB->getParentNode()->process(dataOverlay);
std::vector<u8> inputA = connectedInputA->getOutputData();
std::vector<u8> inputB = connectedInputB->getOutputData();
std::vector<u8> output(std::min(inputA.size(), inputB.size()), 0x00);
for (u32 i = 0; i < output.size(); i++)
output[i] = inputA[i] | inputB[i];
}
};
class NodeBitwiseXOR : public dp::Node {
public:
NodeBitwiseXOR() : Node("Bitwise XOR", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input A"), dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Input B"), dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Buffer, "Output") }) {}
void process(prv::Overlay *dataOverlay) override {
auto connectedInputA = this->getConnectedInputAttribute(0);
auto connectedInputB = this->getConnectedInputAttribute(1);
if (connectedInputA == nullptr || connectedInputB == nullptr)
return;
connectedInputA->getParentNode()->process(dataOverlay);
connectedInputB->getParentNode()->process(dataOverlay);
std::vector<u8> inputA = connectedInputA->getOutputData();
std::vector<u8> inputB = connectedInputB->getOutputData();
std::vector<u8> output(std::min(inputA.size(), inputB.size()), 0x00);
for (u32 i = 0; i < output.size(); i++)
output[i] = inputA[i] ^ inputB[i];
}
};
class NodeReadData : public dp::Node {
public:
NodeReadData() : Node("Read Data", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Integer, "Address"),
dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Integer, "Size"),
dp::Attribute(dp::Attribute::IOType::Out, dp::Attribute::Type::Buffer, "Data")
}) { }
void process(prv::Overlay *dataOverlay) override {
auto connectedInputAddress = this->getConnectedInputAttribute(0);
auto connectedInputSize = this->getConnectedInputAttribute(1);
if (connectedInputAddress == nullptr || connectedInputSize == nullptr)
return;
connectedInputAddress->getParentNode()->process(dataOverlay);
connectedInputSize->getParentNode()->process(dataOverlay);
auto address = *reinterpret_cast<u64*>(connectedInputAddress->getOutputData().data());
auto size = *reinterpret_cast<u64*>(connectedInputSize->getOutputData().data());
std::vector<u8> data;
data.resize(size);
SharedData::currentProvider->readRaw(address, data.data(), size);
this->getAttributes()[2].getOutputData() = data;
}
};
class NodeWriteData : public dp::Node {
public:
NodeWriteData() : Node("Write Data", { dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Integer, "Address"), dp::Attribute(dp::Attribute::IOType::In, dp::Attribute::Type::Buffer, "Data") }) {}
void process(prv::Overlay *dataOverlay) override {
auto connectedInputAddress = this->getConnectedInputAttribute(0);
auto connectedInputData = this->getConnectedInputAttribute(1);
if (connectedInputAddress == nullptr || connectedInputData == nullptr)
return;
connectedInputAddress->getParentNode()->process(dataOverlay);
connectedInputData->getParentNode()->process(dataOverlay);
auto address = *reinterpret_cast<u64*>(connectedInputAddress->getOutputData().data());
auto data = connectedInputData->getOutputData();
dataOverlay->setAddress(address);
dataOverlay->getData() = data;
}
};
void registerDataProcessorNodes() {
ContentRegistry::DataProcessorNode::add<NodeInteger>("Constants", "Integer");
ContentRegistry::DataProcessorNode::add<NodeFloat>("Constants", "Float");
ContentRegistry::DataProcessorNode::add<NodeRGBA8>("Constants", "RGBA8 Color");
ContentRegistry::DataProcessorNode::add<NodeDisplayInteger>("Display", "Integer");
ContentRegistry::DataProcessorNode::add<NodeDisplayFloat>("Display", "Float");
ContentRegistry::DataProcessorNode::add<NodeReadData>("Data Access", "Read");
ContentRegistry::DataProcessorNode::add<NodeWriteData>("Data Access", "Write");
ContentRegistry::DataProcessorNode::add<NodeBitwiseAND>("Bitwise Operations", "AND");
ContentRegistry::DataProcessorNode::add<NodeBitwiseOR>("Bitwise Operations", "OR");
ContentRegistry::DataProcessorNode::add<NodeBitwiseXOR>("Bitwise Operations", "XOR");
ContentRegistry::DataProcessorNode::add<NodeBitwiseNOT>("Bitwise Operations", "NOT");
}
}