b580691871
* feat: Initial implementation of an Intel Hex provider * fix: Reading of bytes from intel hex files * lang: Added localization for new provider * ui: Only show file name in intel hex provider name * feat: Added Motorola SREC provider
326 lines
11 KiB
C++
Vendored
326 lines
11 KiB
C++
Vendored
#ifndef __INTERVAL_TREE_H
|
|
#define __INTERVAL_TREE_H
|
|
|
|
#include <vector>
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <cassert>
|
|
#include <limits>
|
|
|
|
#ifdef USE_INTERVAL_TREE_NAMESPACE
|
|
namespace interval_tree {
|
|
#endif
|
|
template <class Scalar, typename Value>
|
|
class Interval {
|
|
public:
|
|
Scalar start;
|
|
Scalar stop;
|
|
Value value;
|
|
Interval(const Scalar& s, const Scalar& e, const Value& v)
|
|
: start(std::min(s, e))
|
|
, stop(std::max(s, e))
|
|
, value(v)
|
|
{}
|
|
};
|
|
|
|
template <class Scalar, typename Value>
|
|
Value intervalStart(const Interval<Scalar,Value>& i) {
|
|
return i.start;
|
|
}
|
|
|
|
template <class Scalar, typename Value>
|
|
Value intervalStop(const Interval<Scalar, Value>& i) {
|
|
return i.stop;
|
|
}
|
|
|
|
template <class Scalar, typename Value>
|
|
std::ostream& operator<<(std::ostream& out, const Interval<Scalar, Value>& i) {
|
|
out << "Interval(" << i.start << ", " << i.stop << "): " << i.value;
|
|
return out;
|
|
}
|
|
|
|
template <class Scalar, class Value>
|
|
class IntervalTree {
|
|
public:
|
|
typedef Interval<Scalar, Value> interval;
|
|
typedef std::vector<interval> interval_vector;
|
|
|
|
|
|
struct IntervalStartCmp {
|
|
bool operator()(const interval& a, const interval& b) {
|
|
return a.start < b.start;
|
|
}
|
|
};
|
|
|
|
struct IntervalStopCmp {
|
|
bool operator()(const interval& a, const interval& b) {
|
|
return a.stop < b.stop;
|
|
}
|
|
};
|
|
|
|
IntervalTree()
|
|
: left(nullptr)
|
|
, right(nullptr)
|
|
, center(0)
|
|
{}
|
|
|
|
~IntervalTree() = default;
|
|
|
|
std::unique_ptr<IntervalTree> clone() const {
|
|
return std::unique_ptr<IntervalTree>(new IntervalTree(*this));
|
|
}
|
|
|
|
IntervalTree(const IntervalTree& other)
|
|
: intervals(other.intervals),
|
|
left(other.left ? other.left->clone() : nullptr),
|
|
right(other.right ? other.right->clone() : nullptr),
|
|
center(other.center)
|
|
{}
|
|
|
|
IntervalTree& operator=(IntervalTree&&) = default;
|
|
IntervalTree(IntervalTree&&) = default;
|
|
|
|
IntervalTree& operator=(const IntervalTree& other) {
|
|
center = other.center;
|
|
intervals = other.intervals;
|
|
left = other.left ? other.left->clone() : nullptr;
|
|
right = other.right ? other.right->clone() : nullptr;
|
|
return *this;
|
|
}
|
|
|
|
IntervalTree(
|
|
interval_vector&& ivals,
|
|
std::size_t depth = 16,
|
|
std::size_t minbucket = 64,
|
|
std::size_t maxbucket = 512,
|
|
Scalar leftextent = 0,
|
|
Scalar rightextent = 0)
|
|
: left(nullptr)
|
|
, right(nullptr)
|
|
{
|
|
--depth;
|
|
const auto minmaxStop = std::minmax_element(ivals.begin(), ivals.end(),
|
|
IntervalStopCmp());
|
|
const auto minmaxStart = std::minmax_element(ivals.begin(), ivals.end(),
|
|
IntervalStartCmp());
|
|
if (!ivals.empty()) {
|
|
center = (minmaxStart.first->start + minmaxStop.second->stop) / 2;
|
|
}
|
|
if (leftextent == 0 && rightextent == 0) {
|
|
// sort intervals by start
|
|
std::sort(ivals.begin(), ivals.end(), IntervalStartCmp());
|
|
} else {
|
|
assert(std::is_sorted(ivals.begin(), ivals.end(), IntervalStartCmp()));
|
|
}
|
|
if (depth == 0 || (ivals.size() < minbucket && ivals.size() < maxbucket)) {
|
|
std::sort(ivals.begin(), ivals.end(), IntervalStartCmp());
|
|
intervals = std::move(ivals);
|
|
assert(is_valid().first);
|
|
return;
|
|
} else {
|
|
Scalar leftp = 0;
|
|
Scalar rightp = 0;
|
|
|
|
if (leftextent || rightextent) {
|
|
leftp = leftextent;
|
|
rightp = rightextent;
|
|
} else {
|
|
leftp = ivals.front().start;
|
|
rightp = std::max_element(ivals.begin(), ivals.end(),
|
|
IntervalStopCmp())->stop;
|
|
}
|
|
|
|
interval_vector lefts;
|
|
interval_vector rights;
|
|
|
|
for (typename interval_vector::const_iterator i = ivals.begin();
|
|
i != ivals.end(); ++i) {
|
|
const interval& interval = *i;
|
|
if (interval.stop < center) {
|
|
lefts.push_back(interval);
|
|
} else if (interval.start > center) {
|
|
rights.push_back(interval);
|
|
} else {
|
|
assert(interval.start <= center);
|
|
assert(center <= interval.stop);
|
|
intervals.push_back(interval);
|
|
}
|
|
}
|
|
|
|
if (!lefts.empty()) {
|
|
left.reset(new IntervalTree(std::move(lefts),
|
|
depth, minbucket, maxbucket,
|
|
leftp, center));
|
|
}
|
|
if (!rights.empty()) {
|
|
right.reset(new IntervalTree(std::move(rights),
|
|
depth, minbucket, maxbucket,
|
|
center, rightp));
|
|
}
|
|
}
|
|
assert(is_valid().first);
|
|
}
|
|
|
|
// Call f on all intervals near the range [start, stop]:
|
|
template <class UnaryFunction>
|
|
void visit_near(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
|
|
if (!intervals.empty() && ! (stop < intervals.front().start)) {
|
|
for (auto & i : intervals) {
|
|
f(i);
|
|
}
|
|
}
|
|
if (left && start <= center) {
|
|
left->visit_near(start, stop, f);
|
|
}
|
|
if (right && stop >= center) {
|
|
right->visit_near(start, stop, f);
|
|
}
|
|
}
|
|
|
|
// Call f on all intervals crossing pos
|
|
template <class UnaryFunction>
|
|
void visit_overlapping(const Scalar& pos, UnaryFunction f) const {
|
|
visit_overlapping(pos, pos, f);
|
|
}
|
|
|
|
// Call f on all intervals overlapping [start, stop]
|
|
template <class UnaryFunction>
|
|
void visit_overlapping(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
|
|
auto filterF = [&](const interval& interval) {
|
|
if (interval.stop >= start && interval.start <= stop) {
|
|
// Only apply f if overlapping
|
|
f(interval);
|
|
}
|
|
};
|
|
visit_near(start, stop, filterF);
|
|
}
|
|
|
|
// Call f on all intervals contained within [start, stop]
|
|
template <class UnaryFunction>
|
|
void visit_contained(const Scalar& start, const Scalar& stop, UnaryFunction f) const {
|
|
auto filterF = [&](const interval& interval) {
|
|
if (start <= interval.start && interval.stop <= stop) {
|
|
f(interval);
|
|
}
|
|
};
|
|
visit_near(start, stop, filterF);
|
|
}
|
|
|
|
interval_vector findOverlapping(const Scalar& start, const Scalar& stop) const {
|
|
interval_vector result;
|
|
visit_overlapping(start, stop,
|
|
[&](const interval& interval) {
|
|
result.emplace_back(interval);
|
|
});
|
|
return result;
|
|
}
|
|
|
|
interval_vector findContained(const Scalar& start, const Scalar& stop) const {
|
|
interval_vector result;
|
|
visit_contained(start, stop,
|
|
[&](const interval& interval) {
|
|
result.push_back(interval);
|
|
});
|
|
return result;
|
|
}
|
|
bool empty() const {
|
|
if (left && !left->empty()) {
|
|
return false;
|
|
}
|
|
if (!intervals.empty()) {
|
|
return false;
|
|
}
|
|
if (right && !right->empty()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class UnaryFunction>
|
|
void visit_all(UnaryFunction f) const {
|
|
if (left) {
|
|
left->visit_all(f);
|
|
}
|
|
std::for_each(intervals.begin(), intervals.end(), f);
|
|
if (right) {
|
|
right->visit_all(f);
|
|
}
|
|
}
|
|
|
|
std::pair<Scalar, Scalar> extentBruitForce() const {
|
|
struct Extent {
|
|
std::pair<Scalar, Scalar> x = {std::numeric_limits<Scalar>::max(),
|
|
std::numeric_limits<Scalar>::min() };
|
|
void operator()(const interval & interval) {
|
|
x.first = std::min(x.first, interval.start);
|
|
x.second = std::max(x.second, interval.stop);
|
|
}
|
|
};
|
|
Extent extent;
|
|
|
|
visit_all([&](const interval & interval) { extent(interval); });
|
|
return extent.x;
|
|
}
|
|
|
|
// Check all constraints.
|
|
// If first is false, second is invalid.
|
|
std::pair<bool, std::pair<Scalar, Scalar>> is_valid() const {
|
|
const auto minmaxStop = std::minmax_element(intervals.begin(), intervals.end(),
|
|
IntervalStopCmp());
|
|
const auto minmaxStart = std::minmax_element(intervals.begin(), intervals.end(),
|
|
IntervalStartCmp());
|
|
|
|
std::pair<bool, std::pair<Scalar, Scalar>> result = {true, { std::numeric_limits<Scalar>::max(),
|
|
std::numeric_limits<Scalar>::min() }};
|
|
if (!intervals.empty()) {
|
|
result.second.first = std::min(result.second.first, minmaxStart.first->start);
|
|
result.second.second = std::min(result.second.second, minmaxStop.second->stop);
|
|
}
|
|
if (left) {
|
|
auto valid = left->is_valid();
|
|
result.first &= valid.first;
|
|
result.second.first = std::min(result.second.first, valid.second.first);
|
|
result.second.second = std::min(result.second.second, valid.second.second);
|
|
if (!result.first) { return result; }
|
|
if (valid.second.second >= center) {
|
|
result.first = false;
|
|
return result;
|
|
}
|
|
}
|
|
if (right) {
|
|
auto valid = right->is_valid();
|
|
result.first &= valid.first;
|
|
result.second.first = std::min(result.second.first, valid.second.first);
|
|
result.second.second = std::min(result.second.second, valid.second.second);
|
|
if (!result.first) { return result; }
|
|
if (valid.second.first <= center) {
|
|
result.first = false;
|
|
return result;
|
|
}
|
|
}
|
|
if (!std::is_sorted(intervals.begin(), intervals.end(), IntervalStartCmp())) {
|
|
result.first = false;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void clear() {
|
|
left.reset();
|
|
right.reset();
|
|
intervals.clear();
|
|
center = 0;
|
|
}
|
|
|
|
private:
|
|
interval_vector intervals;
|
|
std::unique_ptr<IntervalTree> left;
|
|
std::unique_ptr<IntervalTree> right;
|
|
Scalar center;
|
|
};
|
|
#ifdef USE_INTERVAL_TREE_NAMESPACE
|
|
}
|
|
#endif
|
|
|
|
#endif
|