1
0
mirror of synced 2025-01-19 01:24:15 +01:00
2022-02-01 22:09:44 +01:00

220 lines
6.5 KiB
C++

#include <hex/helpers/patches.hpp>
#include <hex/helpers/utils.hpp>
#include <cstring>
#include <string_view>
#include <type_traits>
namespace hex {
static void pushStringBack(std::vector<u8> &buffer, const std::string &string) {
std::copy(string.begin(), string.end(), std::back_inserter(buffer));
}
template<typename T>
static void pushBytesBack(std::vector<u8> &buffer, T bytes) {
buffer.resize(buffer.size() + sizeof(T));
std::memcpy((&buffer.back() - sizeof(T)) + 1, &bytes, sizeof(T));
}
std::vector<u8> generateIPSPatch(const Patches &patches) {
std::vector<u8> result;
pushStringBack(result, "PATCH");
std::vector<u64> addresses;
std::vector<u8> values;
for (const auto &[address, value] : patches) {
addresses.push_back(address);
values.push_back(value);
}
std::optional<u64> startAddress;
std::vector<u8> bytes;
for (u32 i = 0; i < addresses.size(); i++) {
if (!startAddress.has_value())
startAddress = addresses[i];
if (i != addresses.size() - 1 && addresses[i] == (addresses[i + 1] - 1)) {
bytes.push_back(values[i]);
} else {
bytes.push_back(values[i]);
if (bytes.size() > 0xFFFF || startAddress > 0xFF'FFFF)
return {};
u32 address = startAddress.value();
auto addressBytes = reinterpret_cast<u8 *>(&address);
result.push_back(addressBytes[2]);
result.push_back(addressBytes[1]);
result.push_back(addressBytes[0]);
pushBytesBack<u16>(result, changeEndianess<u16>(bytes.size(), std::endian::big));
for (auto byte : bytes)
result.push_back(byte);
bytes.clear();
startAddress = {};
}
}
pushStringBack(result, "EOF");
return result;
}
std::vector<u8> generateIPS32Patch(const Patches &patches) {
std::vector<u8> result;
pushStringBack(result, "IPS32");
std::vector<u64> addresses;
std::vector<u8> values;
for (const auto &[address, value] : patches) {
addresses.push_back(address);
values.push_back(value);
}
std::optional<u64> startAddress;
std::vector<u8> bytes;
for (u32 i = 0; i < addresses.size(); i++) {
if (!startAddress.has_value())
startAddress = addresses[i];
if (i != addresses.size() - 1 && addresses[i] == (addresses[i + 1] - 1)) {
bytes.push_back(values[i]);
} else {
bytes.push_back(values[i]);
if (bytes.size() > 0xFFFF || startAddress > 0xFFFF'FFFF)
return {};
u32 address = startAddress.value();
auto addressBytes = reinterpret_cast<u8 *>(&address);
result.push_back(addressBytes[3]);
result.push_back(addressBytes[2]);
result.push_back(addressBytes[1]);
result.push_back(addressBytes[0]);
pushBytesBack<u16>(result, changeEndianess<u16>(bytes.size(), std::endian::big));
for (auto byte : bytes)
result.push_back(byte);
bytes.clear();
startAddress = {};
}
}
pushStringBack(result, "EEOF");
return result;
}
Patches loadIPSPatch(const std::vector<u8> &ipsPatch) {
if (ipsPatch.size() < (5 + 3))
return {};
if (std::memcmp(ipsPatch.data(), "PATCH", 5) != 0)
return {};
Patches result;
bool foundEOF = false;
u32 ipsOffset = 5;
while (ipsOffset < ipsPatch.size() - (5 + 3)) {
u32 offset = ipsPatch[ipsOffset + 2] | (ipsPatch[ipsOffset + 1] << 8) | (ipsPatch[ipsOffset + 0] << 16);
u16 size = ipsPatch[ipsOffset + 4] | (ipsPatch[ipsOffset + 3] << 8);
ipsOffset += 5;
// Handle normal record
if (size > 0x0000) {
if (ipsOffset + size > ipsPatch.size() - 3)
return {};
for (u16 i = 0; i < size; i++)
result[offset + i] = ipsPatch[ipsOffset + i];
ipsOffset += size;
}
// Handle RLE record
else {
if (ipsOffset + 3 > ipsPatch.size() - 3)
return {};
u16 rleSize = ipsPatch[ipsOffset + 0] | (ipsPatch[ipsOffset + 1] << 8);
ipsOffset += 2;
for (u16 i = 0; i < rleSize; i++)
result[offset + i] = ipsPatch[ipsOffset + 0];
ipsOffset += 1;
}
if (std::memcmp(ipsPatch.data(), "EOF", 3))
foundEOF = true;
}
if (foundEOF)
return result;
else
return {};
}
Patches loadIPS32Patch(const std::vector<u8> &ipsPatch) {
if (ipsPatch.size() < (5 + 4))
return {};
if (std::memcmp(ipsPatch.data(), "IPS32", 5) != 0)
return {};
Patches result;
bool foundEEOF = false;
u32 ipsOffset = 5;
while (ipsOffset < ipsPatch.size() - (5 + 4)) {
u32 offset = ipsPatch[ipsOffset + 3] | (ipsPatch[ipsOffset + 2] << 8) | (ipsPatch[ipsOffset + 1] << 16) | (ipsPatch[ipsOffset + 0] << 24);
u16 size = ipsPatch[ipsOffset + 5] | (ipsPatch[ipsOffset + 4] << 8);
ipsOffset += 6;
// Handle normal record
if (size > 0x0000) {
if (ipsOffset + size > ipsPatch.size() - 3)
return {};
for (u16 i = 0; i < size; i++)
result[offset + i] = ipsPatch[ipsOffset + i];
ipsOffset += size;
}
// Handle RLE record
else {
if (ipsOffset + 3 > ipsPatch.size() - 3)
return {};
u16 rleSize = ipsPatch[ipsOffset + 0] | (ipsPatch[ipsOffset + 1] << 8);
ipsOffset += 2;
for (u16 i = 0; i < rleSize; i++)
result[offset + i] = ipsPatch[ipsOffset + 0];
ipsOffset += 1;
}
if (std::memcmp(ipsPatch.data(), "EEOF", 4))
foundEEOF = true;
}
if (foundEEOF)
return result;
else
return {};
}
}