1
0
mirror of synced 2025-01-10 05:21:51 +01:00
ImHex/plugins/builtin/source/content/pl_visualizers.cpp
Fenrisfulsur 069221757f
feat: Added chunk based entropy analysis to information view (#933)
Issue: https://github.com/WerWolv/ImHex/issues/522

Implementation of chunk based entropy analysis in diagram.hpp available
from the data information view and in the pattern language.

---------

Co-authored-by: WerWolv <werwolv98@gmail.com>
2023-03-10 16:06:18 +01:00

475 lines
20 KiB
C++

#include <hex/api/content_registry.hpp>
#include <hex/api/localization.hpp>
#include <hex/helpers/disassembler.hpp>
#include <hex/helpers/utils.hpp>
#include <hex/helpers/opengl.hpp>
#include <imgui.h>
#include <implot.h>
#include <imgui_impl_opengl3_loader.h>
#include <hex/ui/imgui_imhex_extensions.h>
#include <fonts/codicons_font.h>
#include <pl/patterns/pattern.hpp>
#include <pl/patterns/pattern_padding.hpp>
#include <miniaudio.h>
#include <romfs/romfs.hpp>
#include <numeric>
#include <content/helpers/diagrams.hpp>
namespace hex::plugin::builtin {
namespace {
template<typename T>
std::vector<T> patternToArray(pl::ptrn::Pattern *pattern){
const auto bytes = pattern->getBytes();
std::vector<T> result;
result.resize(bytes.size() / sizeof(T));
for (size_t i = 0; i < result.size(); i++)
std::memcpy(&result[i], &bytes[i * sizeof(T)], sizeof(T));
return result;
}
}
namespace {
void drawLinePlotVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
static std::vector<float> values;
auto dataPattern = arguments[0].toPattern();
if (ImPlot::BeginPlot("##plot", ImVec2(400, 250), ImPlotFlags_NoChild | ImPlotFlags_CanvasOnly)) {
if (shouldReset) {
values.clear();
values = sampleData(patternToArray<float>(dataPattern), ImPlot::GetPlotSize().x * 4);
}
ImPlot::SetupAxes("X", "Y", ImPlotAxisFlags_AutoFit, ImPlotAxisFlags_AutoFit);
ImPlot::PlotLine("##line", values.data(), values.size());
ImPlot::EndPlot();
}
}
void drawScatterPlotVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
static std::vector<float> xValues, yValues;
auto xPattern = arguments[0].toPattern();
auto yPattern = arguments[1].toPattern();
if (ImPlot::BeginPlot("##plot", ImVec2(400, 250), ImPlotFlags_NoChild | ImPlotFlags_CanvasOnly)) {
if (shouldReset) {
xValues.clear(); yValues.clear();
xValues = sampleData(patternToArray<float>(xPattern), ImPlot::GetPlotSize().x * 4);
yValues = sampleData(patternToArray<float>(yPattern), ImPlot::GetPlotSize().x * 4);
}
ImPlot::SetupAxes("X", "Y", ImPlotAxisFlags_AutoFit, ImPlotAxisFlags_AutoFit);
ImPlot::PlotScatter("##scatter", xValues.data(), yValues.data(), xValues.size());
ImPlot::EndPlot();
}
}
void drawImageVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
static ImGui::Texture texture;
if (shouldReset) {
auto pattern = arguments[0].toPattern();
auto data = pattern->getBytes();
texture = ImGui::Texture(data.data(), data.size());
}
if (texture.isValid())
ImGui::Image(texture, texture.getSize());
}
void drawBitmapVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
static ImGui::Texture texture;
if (shouldReset) {
auto pattern = arguments[0].toPattern();
auto width = arguments[1].toUnsigned();
auto height = arguments[2].toUnsigned();
auto data = pattern->getBytes();
texture = ImGui::Texture(data.data(), data.size(), width, height);
}
if (texture.isValid())
ImGui::Image(texture, texture.getSize());
}
void drawDisassemblyVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
struct Disassembly {
u64 address;
std::vector<u8> bytes;
std::string instruction;
};
static std::vector<Disassembly> disassembly;
if (shouldReset) {
auto pattern = arguments[0].toPattern();
auto baseAddress = arguments[1].toUnsigned();
auto architecture = arguments[2].toUnsigned();
auto mode = arguments[3].toUnsigned();
disassembly.clear();
csh capstone;
if (cs_open(static_cast<cs_arch>(architecture), static_cast<cs_mode>(mode), &capstone) == CS_ERR_OK) {
cs_option(capstone, CS_OPT_SKIPDATA, CS_OPT_ON);
auto data = pattern->getBytes();
cs_insn *instructions = nullptr;
size_t instructionCount = cs_disasm(capstone, data.data(), data.size(), baseAddress, 0, &instructions);
for (size_t i = 0; i < instructionCount; i++) {
disassembly.push_back({ instructions[i].address, { instructions[i].bytes, instructions[i].bytes + instructions[i].size }, hex::format("{} {}", instructions[i].mnemonic, instructions[i].op_str) });
}
cs_free(instructions, instructionCount);
cs_close(&capstone);
}
}
if (ImGui::BeginTable("##disassembly", 3, ImGuiTableFlags_Borders | ImGuiTableFlags_RowBg | ImGuiTableFlags_Resizable | ImGuiTableFlags_Reorderable | ImGuiTableFlags_SizingFixedFit | ImGuiTableFlags_ScrollY, scaled(ImVec2(0, 300)))) {
ImGui::TableSetupScrollFreeze(0, 1);
ImGui::TableSetupColumn("hex.builtin.common.address"_lang);
ImGui::TableSetupColumn("hex.builtin.common.bytes"_lang);
ImGui::TableSetupColumn("hex.builtin.common.instruction"_lang);
ImGui::TableHeadersRow();
for (auto &entry : disassembly) {
ImGui::TableNextRow();
ImGui::TableNextColumn();
ImGui::TextFormatted("0x{0:08X}", entry.address);
ImGui::TableNextColumn();
std::string bytes;
for (auto byte : entry.bytes)
bytes += hex::format("{0:02X} ", byte);
ImGui::TextUnformatted(bytes.c_str());
ImGui::TableNextColumn();
ImGui::TextUnformatted(entry.instruction.c_str());
}
ImGui::EndTable();
}
}
void draw3DVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
auto verticesPattern = arguments[0].toPattern();
auto indicesPattern = arguments[1].toPattern();
static ImGui::Texture texture;
static gl::Vector<float, 3> translation;
static gl::Vector<float, 3> rotation = { { 1.0F, -1.0F, 0.0F } };
static float scaling = 0.1F;
static std::vector<float> vertices, normals;
static std::vector<u32> indices;
static gl::Shader shader;
static gl::VertexArray vertexArray;
static gl::Buffer<float> vertexBuffer, normalBuffer;
static gl::Buffer<u32> indexBuffer;
{
auto dragDelta = ImGui::GetMouseDragDelta(ImGuiMouseButton_Middle);
rotation[0] += -dragDelta.y * 0.0075F;
rotation[1] += -dragDelta.x * 0.0075F;
ImGui::ResetMouseDragDelta(ImGuiMouseButton_Middle);
dragDelta = ImGui::GetMouseDragDelta(ImGuiMouseButton_Right);
translation[0] += -dragDelta.x * 0.1F;
translation[1] += -dragDelta.y * 0.1F;
ImGui::ResetMouseDragDelta(ImGuiMouseButton_Right);
auto scrollDelta = ImGui::GetIO().MouseWheel;
scaling += scrollDelta * 0.01F;
if (scaling < 0.01F)
scaling = 0.01F;
}
if (shouldReset) {
vertices = patternToArray<float>(verticesPattern);
indices = patternToArray<u32>(indicesPattern);
normals.clear();
normals.resize(vertices.size());
for (u32 i = 9; i < normals.size(); i += 9) {
auto v1 = gl::Vector<float, 3>({ vertices[i - 9], vertices[i - 8], vertices[i - 7] });
auto v2 = gl::Vector<float, 3>({ vertices[i - 6], vertices[i - 5], vertices[i - 4] });
auto v3 = gl::Vector<float, 3>({ vertices[i - 3], vertices[i - 2], vertices[i - 1] });
auto normal = ((v2 - v1).cross(v3 - v1)).normalize();
normals[i - 9] = normal[0];
normals[i - 8] = normal[1];
normals[i - 7] = normal[2];
normals[i - 6] = normal[0];
normals[i - 5] = normal[1];
normals[i - 4] = normal[2];
normals[i - 3] = normal[0];
normals[i - 2] = normal[1];
normals[i - 1] = normal[2];
}
shader = gl::Shader(romfs::get("shaders/default/vertex.glsl").string(), romfs::get("shaders/default/fragment.glsl").string());
vertexArray = gl::VertexArray();
vertexBuffer = {};
normalBuffer = {};
indexBuffer = {};
vertexArray.bind();
vertexBuffer = gl::Buffer<float>(gl::BufferType::Vertex, vertices);
normalBuffer = gl::Buffer<float>(gl::BufferType::Vertex, normals);
indexBuffer = gl::Buffer<u32>(gl::BufferType::Index, indices);
vertexArray.addBuffer(0, vertexBuffer);
vertexArray.addBuffer(1, normalBuffer);
if (!indices.empty())
vertexArray.addBuffer(2, indexBuffer);
vertexBuffer.unbind();
normalBuffer.unbind();
indexBuffer.unbind();
vertexArray.unbind();
}
{
gl::FrameBuffer frameBuffer;
gl::Texture renderTexture(400_scaled, 400_scaled);
frameBuffer.attachTexture(renderTexture);
frameBuffer.bind();
glEnable(GL_DEPTH_TEST);
glEnable(GL_DEPTH_CLAMP);
shader.bind();
shader.setUniform("scale", scaling);
shader.setUniform("rotation", rotation);
shader.setUniform("translation", translation);
vertexArray.bind();
glViewport(0, 0, renderTexture.getWidth(), renderTexture.getHeight());
glClearColor(0.00F, 0.00F, 0.00F, 0.00f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0F, 1.0F, -1.0F, 1.0F, 0.0000001F, 10000000.0F);
if (indices.empty())
vertexBuffer.draw();
else
indexBuffer.draw();
vertexArray.unbind();
shader.unbind();
frameBuffer.unbind();
texture = ImGui::Texture(renderTexture.release(), renderTexture.getWidth(), renderTexture.getHeight());
}
auto textureSize = texture.getSize();
if (ImGui::BeginTable("##3DVisualizer", 2, ImGuiTableFlags_SizingFixedFit)) {
ImGui::TableNextRow();
ImGui::TableNextColumn();
ImGui::PushStyleVar(ImGuiStyleVar_WindowPadding, ImVec2(0, 0));
if (ImGui::BeginChild("##image", textureSize, true, ImGuiWindowFlags_NoScrollbar | ImGuiWindowFlags_NoScrollWithMouse)) {
ImGui::Image(texture, textureSize, ImVec2(0, 1), ImVec2(1, 0));
}
ImGui::EndChild();
ImGui::PopStyleVar();
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.pl_visualizer.3d.rotation"_lang);
ImGui::VSliderFloat("##X", ImVec2(18_scaled, textureSize.y), &rotation.data()[0], 0, std::numbers::pi * 2, "", ImGuiSliderFlags_AlwaysClamp);
ImGui::SameLine();
ImGui::VSliderFloat("##Y", ImVec2(18_scaled, textureSize.y), &rotation.data()[1], 0, std::numbers::pi * 2, "", ImGuiSliderFlags_AlwaysClamp);
ImGui::SameLine();
ImGui::VSliderFloat("##Z", ImVec2(18_scaled, textureSize.y), &rotation.data()[2], 0, std::numbers::pi * 2, "", ImGuiSliderFlags_AlwaysClamp);
ImGui::TableNextRow();
ImGui::TableNextColumn();
ImGui::TextUnformatted("hex.builtin.pl_visualizer.3d.scale"_lang);
ImGui::SameLine();
ImGui::PushItemWidth(ImGui::GetContentRegionAvail().x);
ImGui::SliderFloat("##Scale", &scaling, 0.0001F, 0.2F, "");
ImGui::PopItemWidth();
for (u8 i = 0; i < 3; i++) {
while (rotation.data()[i] > std::numbers::pi * 2)
rotation.data()[i] -= std::numbers::pi * 2;
while (rotation.data()[i] < 0)
rotation.data()[i] += std::numbers::pi * 2;
}
ImGui::TableNextColumn();
if (ImGui::Button("hex.builtin.common.reset"_lang, ImVec2(ImGui::GetContentRegionAvail().x, 0))) {
translation = gl::Vector<float, 3>({ 0.0F, 0.0F, 0.0F });
rotation = gl::Vector<float, 3>({ 0.0F, 0.0F, 0.0F });
scaling = 0.1F;
}
ImGui::EndTable();
}
}
void drawSoundVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
auto wavePattern = arguments[0].toPattern();
auto channels = arguments[1].toUnsigned();
auto sampleRate = arguments[2].toUnsigned();
static std::vector<i16> waveData, sampledData;
static ma_device audioDevice;
static ma_device_config deviceConfig;
static bool shouldStop = false;
static u64 index = 0;
static TaskHolder resetTask;
if (shouldReset) {
waveData.clear();
resetTask = TaskManager::createTask("Visualizing...", TaskManager::NoProgress, [=](Task &) {
ma_device_stop(&audioDevice);
waveData = patternToArray<i16>(wavePattern);
sampledData = sampleData(waveData, 300_scaled * 4);
index = 0;
deviceConfig = ma_device_config_init(ma_device_type_playback);
deviceConfig.playback.format = ma_format_s16;
deviceConfig.playback.channels = channels;
deviceConfig.sampleRate = sampleRate;
deviceConfig.pUserData = &waveData;
deviceConfig.dataCallback = [](ma_device *device, void *pOutput, const void *, ma_uint32 frameCount) {
if (index >= waveData.size()) {
index = 0;
shouldStop = true;
return;
}
ma_copy_pcm_frames(pOutput, waveData.data() + index, frameCount, device->playback.format, device->playback.channels);
index += frameCount;
};
ma_device_init(nullptr, &deviceConfig, &audioDevice);
});
}
ImGui::BeginDisabled(resetTask.isRunning());
ImPlot::PushStyleVar(ImPlotStyleVar_PlotPadding, ImVec2(0, 0));
if (ImPlot::BeginPlot("##amplitude_plot", scaled(ImVec2(300, 80)), ImPlotFlags_NoChild | ImPlotFlags_CanvasOnly | ImPlotFlags_NoFrame | ImPlotFlags_NoInputs)) {
ImPlot::SetupAxes("##time", "##amplitude", ImPlotAxisFlags_NoDecorations | ImPlotAxisFlags_NoMenus, ImPlotAxisFlags_NoDecorations | ImPlotAxisFlags_NoMenus);
ImPlot::SetupAxesLimits(0, waveData.size(), std::numeric_limits<i16>::min(), std::numeric_limits<i16>::max(), ImGuiCond_Always);
double dragPos = index;
if (ImPlot::DragLineX(1, &dragPos, ImGui::GetStyleColorVec4(ImGuiCol_Text))) {
if (dragPos < 0) dragPos = 0;
if (dragPos >= waveData.size()) dragPos = waveData.size() - 1;
index = dragPos;
}
ImPlot::PlotLine("##audio", sampledData.data(), sampledData.size());
ImPlot::EndPlot();
}
ImPlot::PopStyleVar();
{
const u64 min = 0, max = waveData.size();
ImGui::PushItemWidth(300_scaled);
ImGui::PushStyleVar(ImGuiStyleVar_FramePadding, ImVec2(0, 0));
ImGui::SliderScalar("##index", ImGuiDataType_U64, &index, &min, &max, "");
ImGui::PopStyleVar();
ImGui::PopItemWidth();
}
if (shouldStop) {
shouldStop = false;
ma_device_stop(&audioDevice);
}
bool playing = ma_device_is_started(&audioDevice);
if (ImGui::IconButton(playing ? ICON_VS_DEBUG_PAUSE : ICON_VS_PLAY, ImGui::GetCustomColorVec4(ImGuiCustomCol_ToolbarGreen))) {
if (playing)
ma_device_stop(&audioDevice);
else
ma_device_start(&audioDevice);
}
ImGui::SameLine();
if (ImGui::IconButton(ICON_VS_DEBUG_STOP, ImGui::GetCustomColorVec4(ImGuiCustomCol_ToolbarRed))) {
index = 0;
ma_device_stop(&audioDevice);
}
ImGui::EndDisabled();
ImGui::SameLine();
if (resetTask.isRunning())
ImGui::TextSpinner("");
else
ImGui::TextFormatted("{:02d}:{:02d} / {:02d}:{:02d}",
(index / sampleRate) / 60, (index / sampleRate) % 60,
(waveData.size() / sampleRate) / 60, (waveData.size() / sampleRate) % 60);
}
void drawChunkBasedEntropyVisualizer(pl::ptrn::Pattern &, pl::ptrn::Iteratable &, bool shouldReset, std::span<const pl::core::Token::Literal> arguments) {
// variable used to store the result to avoid having to recalculate the result at each frame
static DiagramChunkBasedEntropyAnalysis analyzer;
// compute data
if (shouldReset) {
auto pattern = arguments[0].toPattern();
auto chunkSize = arguments[1].toUnsigned();
analyzer.process(pattern->getBytes(), chunkSize);
}
// show results
analyzer.draw(ImVec2(400, 250), ImPlotFlags_NoChild | ImPlotFlags_CanvasOnly);
}
}
void registerPatternLanguageVisualizers() {
ContentRegistry::PatternLanguage::addVisualizer("line_plot", drawLinePlotVisualizer, 1);
ContentRegistry::PatternLanguage::addVisualizer("scatter_plot", drawScatterPlotVisualizer, 2);
ContentRegistry::PatternLanguage::addVisualizer("image", drawImageVisualizer, 1);
ContentRegistry::PatternLanguage::addVisualizer("bitmap", drawBitmapVisualizer, 3);
ContentRegistry::PatternLanguage::addVisualizer("disassembler", drawDisassemblyVisualizer, 4);
ContentRegistry::PatternLanguage::addVisualizer("3d", draw3DVisualizer, 2);
ContentRegistry::PatternLanguage::addVisualizer("sound", drawSoundVisualizer, 3);
ContentRegistry::PatternLanguage::addVisualizer("chunk_entropy", drawChunkBasedEntropyVisualizer, 2);
}
}