1
0
mirror of synced 2024-12-11 15:36:01 +01:00
ImHex/lib/external/imgui/include/implot_internal.h

1518 lines
60 KiB
C++
Vendored

// MIT License
// Copyright (c) 2021 Evan Pezent
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
// ImPlot v0.13 WIP
// You may use this file to debug, understand or extend ImPlot features but we
// don't provide any guarantee of forward compatibility!
//-----------------------------------------------------------------------------
// [SECTION] Header Mess
//-----------------------------------------------------------------------------
#pragma once
#ifndef IMGUI_DEFINE_MATH_OPERATORS
#define IMGUI_DEFINE_MATH_OPERATORS
#endif
#include <time.h>
#include "imgui_internal.h"
#ifndef IMPLOT_VERSION
#error Must include implot.h before implot_internal.h
#endif
// Support for pre-1.84 versions. ImPool's GetSize() -> GetBufSize()
#if (IMGUI_VERSION_NUM < 18303)
#define GetBufSize GetSize
#endif
//-----------------------------------------------------------------------------
// [SECTION] Constants
//-----------------------------------------------------------------------------
// Constants can be changed unless stated otherwise. We may move some of these
// to ImPlotStyleVar_ over time.
// Mimimum allowable timestamp value 01/01/1970 @ 12:00am (UTC) (DO NOT DECREASE THIS)
#define IMPLOT_MIN_TIME 0
// Maximum allowable timestamp value 01/01/3000 @ 12:00am (UTC) (DO NOT INCREASE THIS)
#define IMPLOT_MAX_TIME 32503680000
// Default label format for axis labels
#define IMPLOT_LABEL_FORMAT "%g"
// Max character size for tick labels
#define IMPLOT_LABEL_MAX_SIZE 32
// Plot values less than or equal to 0 will be replaced with this on log scale axes
#define IMPLOT_LOG_ZERO DBL_MIN
//-----------------------------------------------------------------------------
// [SECTION] Macros
//-----------------------------------------------------------------------------
#define IMPLOT_NUM_X_AXES ImAxis_Y1
#define IMPLOT_NUM_Y_AXES (ImAxis_COUNT - IMPLOT_NUM_X_AXES)
// Split ImU32 color into RGB components [0 255]
#define IM_COL32_SPLIT_RGB(col,r,g,b) \
ImU32 r = ((col >> IM_COL32_R_SHIFT) & 0xFF); \
ImU32 g = ((col >> IM_COL32_G_SHIFT) & 0xFF); \
ImU32 b = ((col >> IM_COL32_B_SHIFT) & 0xFF);
//-----------------------------------------------------------------------------
// [SECTION] Forward Declarations
//-----------------------------------------------------------------------------
struct ImPlotTick;
struct ImPlotAxis;
struct ImPlotAxisColor;
struct ImPlotItem;
struct ImPlotLegend;
struct ImPlotPlot;
struct ImPlotNextPlotData;
//-----------------------------------------------------------------------------
// [SECTION] Context Pointer
//-----------------------------------------------------------------------------
#ifndef GImPlot
extern IMPLOT_API ImPlotContext* GImPlot; // Current implicit context pointer
#endif
//-----------------------------------------------------------------------------
// [SECTION] Generic Helpers
//-----------------------------------------------------------------------------
// Computes the common (base-10) logarithm
static inline float ImLog10(float x) { return log10f(x); }
static inline double ImLog10(double x) { return log10(x); }
// Returns true if a flag is set
template <typename TSet, typename TFlag>
static inline bool ImHasFlag(TSet set, TFlag flag) { return (set & flag) == flag; }
// Flips a flag in a flagset
template <typename TSet, typename TFlag>
static inline void ImFlipFlag(TSet& set, TFlag flag) { ImHasFlag(set, flag) ? set &= ~flag : set |= flag; }
// Linearly remaps x from [x0 x1] to [y0 y1].
template <typename T>
static inline T ImRemap(T x, T x0, T x1, T y0, T y1) { return y0 + (x - x0) * (y1 - y0) / (x1 - x0); }
// Linear rempas x from [x0 x1] to [0 1]
template <typename T>
static inline T ImRemap01(T x, T x0, T x1) { return (x - x0) / (x1 - x0); }
// Returns always positive modulo (assumes r != 0)
static inline int ImPosMod(int l, int r) { return (l % r + r) % r; }
// Returns true if val is NAN or INFINITY
static inline bool ImNanOrInf(double val) { return !(val >= -DBL_MAX && val <= DBL_MAX) || isnan(val); }
// Turns NANs to 0s
static inline double ImConstrainNan(double val) { return isnan(val) ? 0 : val; }
// Turns infinity to floating point maximums
static inline double ImConstrainInf(double val) { return val >= DBL_MAX ? DBL_MAX : val <= -DBL_MAX ? - DBL_MAX : val; }
// Turns numbers less than or equal to 0 to 0.001 (sort of arbitrary, is there a better way?)
static inline double ImConstrainLog(double val) { return val <= 0 ? 0.001f : val; }
// Turns numbers less than 0 to zero
static inline double ImConstrainTime(double val) { return val < IMPLOT_MIN_TIME ? IMPLOT_MIN_TIME : (val > IMPLOT_MAX_TIME ? IMPLOT_MAX_TIME : val); }
// True if two numbers are approximately equal using units in the last place.
static inline bool ImAlmostEqual(double v1, double v2, int ulp = 2) { return ImAbs(v1-v2) < DBL_EPSILON * ImAbs(v1+v2) * ulp || ImAbs(v1-v2) < DBL_MIN; }
// Finds min value in an unsorted array
template <typename T>
static inline T ImMinArray(const T* values, int count) { T m = values[0]; for (int i = 1; i < count; ++i) { if (values[i] < m) { m = values[i]; } } return m; }
// Finds the max value in an unsorted array
template <typename T>
static inline T ImMaxArray(const T* values, int count) { T m = values[0]; for (int i = 1; i < count; ++i) { if (values[i] > m) { m = values[i]; } } return m; }
// Finds the min and max value in an unsorted array
template <typename T>
static inline void ImMinMaxArray(const T* values, int count, T* min_out, T* max_out) {
T Min = values[0]; T Max = values[0];
for (int i = 1; i < count; ++i) {
if (values[i] < Min) { Min = values[i]; }
if (values[i] > Max) { Max = values[i]; }
}
*min_out = Min; *max_out = Max;
}
// Finds the sim of an array
template <typename T>
static inline T ImSum(const T* values, int count) {
T sum = 0;
for (int i = 0; i < count; ++i)
sum += values[i];
return sum;
}
// Finds the mean of an array
template <typename T>
static inline double ImMean(const T* values, int count) {
double den = 1.0 / count;
double mu = 0;
for (int i = 0; i < count; ++i)
mu += values[i] * den;
return mu;
}
// Finds the sample standard deviation of an array
template <typename T>
static inline double ImStdDev(const T* values, int count) {
double den = 1.0 / (count - 1.0);
double mu = ImMean(values, count);
double x = 0;
for (int i = 0; i < count; ++i)
x += (values[i] - mu) * (values[i] - mu) * den;
return sqrt(x);
}
// Mix color a and b by factor s in [0 256]
static inline ImU32 ImMixU32(ImU32 a, ImU32 b, ImU32 s) {
#ifdef IMPLOT_MIX64
const ImU32 af = 256-s;
const ImU32 bf = s;
const ImU64 al = (a & 0x00ff00ff) | (((ImU64)(a & 0xff00ff00)) << 24);
const ImU64 bl = (b & 0x00ff00ff) | (((ImU64)(b & 0xff00ff00)) << 24);
const ImU64 mix = (al * af + bl * bf);
return ((mix >> 32) & 0xff00ff00) | ((mix & 0xff00ff00) >> 8);
#else
const ImU32 af = 256-s;
const ImU32 bf = s;
const ImU32 al = (a & 0x00ff00ff);
const ImU32 ah = (a & 0xff00ff00) >> 8;
const ImU32 bl = (b & 0x00ff00ff);
const ImU32 bh = (b & 0xff00ff00) >> 8;
const ImU32 ml = (al * af + bl * bf);
const ImU32 mh = (ah * af + bh * bf);
return (mh & 0xff00ff00) | ((ml & 0xff00ff00) >> 8);
#endif
}
// Lerp across an array of 32-bit collors given t in [0.0 1.0]
static inline ImU32 ImLerpU32(const ImU32* colors, int size, float t) {
int i1 = (int)((size - 1 ) * t);
int i2 = i1 + 1;
if (i2 == size || size == 1)
return colors[i1];
float den = 1.0f / (size - 1);
float t1 = i1 * den;
float t2 = i2 * den;
float tr = ImRemap01(t, t1, t2);
return ImMixU32(colors[i1], colors[i2], (ImU32)(tr*256));
}
// Set alpha channel of 32-bit color from float in range [0.0 1.0]
static inline ImU32 ImAlphaU32(ImU32 col, float alpha) {
return col & ~((ImU32)((1.0f-alpha)*255)<<IM_COL32_A_SHIFT);
}
//-----------------------------------------------------------------------------
// [SECTION] ImPlot Enums
//-----------------------------------------------------------------------------
typedef int ImPlotScale; // -> enum ImPlotScale_
typedef int ImPlotTimeUnit; // -> enum ImPlotTimeUnit_
typedef int ImPlotDateFmt; // -> enum ImPlotDateFmt_
typedef int ImPlotTimeFmt; // -> enum ImPlotTimeFmt_
// XY axes scaling combinations
enum ImPlotScale_ {
ImPlotScale_LinLin, // linear x, linear y
ImPlotScale_LogLin, // log x, linear y
ImPlotScale_LinLog, // linear x, log y
ImPlotScale_LogLog // log x, log y
};
enum ImPlotTimeUnit_ {
ImPlotTimeUnit_Us, // microsecond
ImPlotTimeUnit_Ms, // millisecond
ImPlotTimeUnit_S, // second
ImPlotTimeUnit_Min, // minute
ImPlotTimeUnit_Hr, // hour
ImPlotTimeUnit_Day, // day
ImPlotTimeUnit_Mo, // month
ImPlotTimeUnit_Yr, // year
ImPlotTimeUnit_COUNT
};
enum ImPlotDateFmt_ { // default [ ISO 8601 ]
ImPlotDateFmt_None = 0,
ImPlotDateFmt_DayMo, // 10/3 [ --10-03 ]
ImPlotDateFmt_DayMoYr, // 10/3/91 [ 1991-10-03 ]
ImPlotDateFmt_MoYr, // Oct 1991 [ 1991-10 ]
ImPlotDateFmt_Mo, // Oct [ --10 ]
ImPlotDateFmt_Yr // 1991 [ 1991 ]
};
enum ImPlotTimeFmt_ { // default [ 24 Hour Clock ]
ImPlotTimeFmt_None = 0,
ImPlotTimeFmt_Us, // .428 552 [ .428 552 ]
ImPlotTimeFmt_SUs, // :29.428 552 [ :29.428 552 ]
ImPlotTimeFmt_SMs, // :29.428 [ :29.428 ]
ImPlotTimeFmt_S, // :29 [ :29 ]
ImPlotTimeFmt_HrMinSMs, // 7:21:29.428pm [ 19:21:29.428 ]
ImPlotTimeFmt_HrMinS, // 7:21:29pm [ 19:21:29 ]
ImPlotTimeFmt_HrMin, // 7:21pm [ 19:21 ]
ImPlotTimeFmt_Hr // 7pm [ 19:00 ]
};
//-----------------------------------------------------------------------------
// [SECTION] ImPlot Structs
//-----------------------------------------------------------------------------
// Combined date/time format spec
struct ImPlotDateTimeFmt {
ImPlotDateTimeFmt(ImPlotDateFmt date_fmt, ImPlotTimeFmt time_fmt, bool use_24_hr_clk = false, bool use_iso_8601 = false) {
Date = date_fmt;
Time = time_fmt;
UseISO8601 = use_iso_8601;
Use24HourClock = use_24_hr_clk;
}
ImPlotDateFmt Date;
ImPlotTimeFmt Time;
bool UseISO8601;
bool Use24HourClock;
};
// Two part timestamp struct.
struct ImPlotTime {
time_t S; // second part
int Us; // microsecond part
ImPlotTime() { S = 0; Us = 0; }
ImPlotTime(time_t s, int us = 0) { S = s + us / 1000000; Us = us % 1000000; }
void RollOver() { S = S + Us / 1000000; Us = Us % 1000000; }
double ToDouble() const { return (double)S + (double)Us / 1000000.0; }
static ImPlotTime FromDouble(double t) { return ImPlotTime((time_t)t, (int)(t * 1000000 - floor(t) * 1000000)); }
};
static inline ImPlotTime operator+(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return ImPlotTime(lhs.S + rhs.S, lhs.Us + rhs.Us); }
static inline ImPlotTime operator-(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return ImPlotTime(lhs.S - rhs.S, lhs.Us - rhs.Us); }
static inline bool operator==(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs.S == rhs.S && lhs.Us == rhs.Us; }
static inline bool operator<(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs.S == rhs.S ? lhs.Us < rhs.Us : lhs.S < rhs.S; }
static inline bool operator>(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return rhs < lhs; }
static inline bool operator<=(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs < rhs || lhs == rhs; }
static inline bool operator>=(const ImPlotTime& lhs, const ImPlotTime& rhs)
{ return lhs > rhs || lhs == rhs; }
// Colormap data storage
struct ImPlotColormapData {
ImVector<ImU32> Keys;
ImVector<int> KeyCounts;
ImVector<int> KeyOffsets;
ImVector<ImU32> Tables;
ImVector<int> TableSizes;
ImVector<int> TableOffsets;
ImGuiTextBuffer Text;
ImVector<int> TextOffsets;
ImVector<bool> Quals;
ImGuiStorage Map;
int Count;
ImPlotColormapData() { Count = 0; }
int Append(const char* name, const ImU32* keys, int count, bool qual) {
if (GetIndex(name) != -1)
return -1;
KeyOffsets.push_back(Keys.size());
KeyCounts.push_back(count);
Keys.reserve(Keys.size()+count);
for (int i = 0; i < count; ++i)
Keys.push_back(keys[i]);
TextOffsets.push_back(Text.size());
Text.append(name, name + strlen(name) + 1);
Quals.push_back(qual);
ImGuiID id = ImHashStr(name);
int idx = Count++;
Map.SetInt(id,idx);
_AppendTable(idx);
return idx;
}
void _AppendTable(ImPlotColormap cmap) {
int key_count = GetKeyCount(cmap);
const ImU32* keys = GetKeys(cmap);
int off = Tables.size();
TableOffsets.push_back(off);
if (IsQual(cmap)) {
Tables.reserve(key_count);
for (int i = 0; i < key_count; ++i)
Tables.push_back(keys[i]);
TableSizes.push_back(key_count);
}
else {
int max_size = 255 * (key_count-1) + 1;
Tables.reserve(off + max_size);
// ImU32 last = keys[0];
// Tables.push_back(last);
// int n = 1;
for (int i = 0; i < key_count-1; ++i) {
for (int s = 0; s < 255; ++s) {
ImU32 a = keys[i];
ImU32 b = keys[i+1];
ImU32 c = ImMixU32(a,b,s);
// if (c != last) {
Tables.push_back(c);
// last = c;
// n++;
// }
}
}
ImU32 c = keys[key_count-1];
// if (c != last) {
Tables.push_back(c);
// n++;
// }
// TableSizes.push_back(n);
TableSizes.push_back(max_size);
}
}
void RebuildTables() {
Tables.resize(0);
TableSizes.resize(0);
TableOffsets.resize(0);
for (int i = 0; i < Count; ++i)
_AppendTable(i);
}
inline bool IsQual(ImPlotColormap cmap) const { return Quals[cmap]; }
inline const char* GetName(ImPlotColormap cmap) const { return cmap < Count ? Text.Buf.Data + TextOffsets[cmap] : NULL; }
inline ImPlotColormap GetIndex(const char* name) const { ImGuiID key = ImHashStr(name); return Map.GetInt(key,-1); }
inline const ImU32* GetKeys(ImPlotColormap cmap) const { return &Keys[KeyOffsets[cmap]]; }
inline int GetKeyCount(ImPlotColormap cmap) const { return KeyCounts[cmap]; }
inline ImU32 GetKeyColor(ImPlotColormap cmap, int idx) const { return Keys[KeyOffsets[cmap]+idx]; }
inline void SetKeyColor(ImPlotColormap cmap, int idx, ImU32 value) { Keys[KeyOffsets[cmap]+idx] = value; RebuildTables(); }
inline const ImU32* GetTable(ImPlotColormap cmap) const { return &Tables[TableOffsets[cmap]]; }
inline int GetTableSize(ImPlotColormap cmap) const { return TableSizes[cmap]; }
inline ImU32 GetTableColor(ImPlotColormap cmap, int idx) const { return Tables[TableOffsets[cmap]+idx]; }
inline ImU32 LerpTable(ImPlotColormap cmap, float t) const {
int off = TableOffsets[cmap];
int siz = TableSizes[cmap];
int idx = Quals[cmap] ? ImClamp((int)(siz*t),0,siz-1) : (int)((siz - 1) * t + 0.5f);
return Tables[off + idx];
}
};
// ImPlotPoint with positive/negative error values
struct ImPlotPointError {
double X, Y, Neg, Pos;
ImPlotPointError(double x, double y, double neg, double pos) {
X = x; Y = y; Neg = neg; Pos = pos;
}
};
// Interior plot label/annotation
struct ImPlotAnnotation {
ImVec2 Pos;
ImVec2 Offset;
ImU32 ColorBg;
ImU32 ColorFg;
int TextOffset;
bool Clamp;
};
// Collection of plot labels
struct ImPlotAnnotationCollection {
ImVector<ImPlotAnnotation> Annotations;
ImGuiTextBuffer TextBuffer;
int Size;
ImPlotAnnotationCollection() { Reset(); }
void AppendV(const ImVec2& pos, const ImVec2& off, ImU32 bg, ImU32 fg, bool clamp, const char* fmt, va_list args) IM_FMTLIST(7) {
ImPlotAnnotation an;
an.Pos = pos; an.Offset = off;
an.ColorBg = bg; an.ColorFg = fg;
an.TextOffset = TextBuffer.size();
an.Clamp = clamp;
Annotations.push_back(an);
TextBuffer.appendfv(fmt, args);
const char nul[] = "";
TextBuffer.append(nul,nul+1);
Size++;
}
void Append(const ImVec2& pos, const ImVec2& off, ImU32 bg, ImU32 fg, bool clamp, const char* fmt, ...) IM_FMTARGS(7) {
va_list args;
va_start(args, fmt);
AppendV(pos, off, bg, fg, clamp, fmt, args);
va_end(args);
}
const char* GetText(int idx) {
return TextBuffer.Buf.Data + Annotations[idx].TextOffset;
}
void Reset() {
Annotations.shrink(0);
TextBuffer.Buf.shrink(0);
Size = 0;
}
};
struct ImPlotTag {
ImAxis Axis;
double Value;
ImU32 ColorBg;
ImU32 ColorFg;
int TextOffset;
};
struct ImPlotTagCollection {
ImVector<ImPlotTag> Tags;
ImGuiTextBuffer TextBuffer;
int Size;
ImPlotTagCollection() { Reset(); }
void AppendV(ImAxis axis, double value, ImU32 bg, ImU32 fg, const char* fmt, va_list args) IM_FMTLIST(6) {
ImPlotTag tag;
tag.Axis = axis;
tag.Value = value;
tag.ColorBg = bg;
tag.ColorFg = fg;
tag.TextOffset = TextBuffer.size();
Tags.push_back(tag);
TextBuffer.appendfv(fmt, args);
const char nul[] = "";
TextBuffer.append(nul,nul+1);
Size++;
}
void Append(ImAxis axis, double value, ImU32 bg, ImU32 fg, const char* fmt, ...) IM_FMTARGS(6) {
va_list args;
va_start(args, fmt);
AppendV(axis, value, bg, fg, fmt, args);
va_end(args);
}
const char* GetText(int idx) {
return TextBuffer.Buf.Data + Tags[idx].TextOffset;
}
void Reset() {
Tags.shrink(0);
TextBuffer.Buf.shrink(0);
Size = 0;
}
};
// Tick mark info
struct ImPlotTick
{
double PlotPos;
float PixelPos;
ImVec2 LabelSize;
int TextOffset;
bool Major;
bool ShowLabel;
int Level;
ImPlotTick(double value, bool major, bool show_label) {
PlotPos = value;
Major = major;
ShowLabel = show_label;
TextOffset = -1;
Level = 0;
}
};
// Collection of ticks
struct ImPlotTickCollection {
ImVector<ImPlotTick> Ticks;
ImGuiTextBuffer TextBuffer;
ImVec2 MaxSize;
ImVec2 LateSize;
int Size;
ImPlotTickCollection() { Reset(); }
const ImPlotTick& Append(const ImPlotTick& tick) {
if (tick.ShowLabel) {
MaxSize.x = tick.LabelSize.x > MaxSize.x ? tick.LabelSize.x : MaxSize.x;
MaxSize.y = tick.LabelSize.y > MaxSize.y ? tick.LabelSize.y : MaxSize.y;
}
Ticks.push_back(tick);
Size++;
return Ticks.back();
}
const ImPlotTick& Append(double value, bool major, bool show_label, ImPlotFormatter formatter, void* data) {
ImPlotTick tick(value, major, show_label);
if (show_label && formatter != NULL) {
char buff[IMPLOT_LABEL_MAX_SIZE];
tick.TextOffset = TextBuffer.size();
formatter(tick.PlotPos, buff, sizeof(buff), data);
TextBuffer.append(buff, buff + strlen(buff) + 1);
tick.LabelSize = ImGui::CalcTextSize(TextBuffer.Buf.Data + tick.TextOffset);
}
return Append(tick);
}
const char* GetText(int idx) const {
return TextBuffer.Buf.Data + Ticks[idx].TextOffset;
}
void OverrideSize(const ImVec2& size) {
MaxSize.x = size.x > MaxSize.x ? size.x : MaxSize.x;
MaxSize.y = size.y > MaxSize.y ? size.y : MaxSize.y;
}
void OverrideSizeLate(const ImVec2& size) {
LateSize.x = size.x > LateSize.x ? size.x : LateSize.x;
LateSize.y = size.y > LateSize.y ? size.y : LateSize.y;
}
void Reset() {
Ticks.shrink(0);
TextBuffer.Buf.shrink(0);
MaxSize = LateSize;
LateSize = ImVec2(0,0);
Size = 0;
}
};
// Axis state information that must persist after EndPlot
struct ImPlotAxis
{
ImGuiID ID;
ImPlotAxisFlags Flags;
ImPlotAxisFlags PreviousFlags;
ImPlotCond RangeCond;
ImPlotTickCollection Ticks;
ImPlotRange Range;
ImPlotRange FitExtents;
ImPlotAxis* OrthoAxis;
double* LinkedMin;
double* LinkedMax;
int PickerLevel;
ImPlotTime PickerTimeMin, PickerTimeMax;
float Datum1, Datum2;
float PixelMin, PixelMax;
double LinM, LogD;
ImRect HoverRect;
int LabelOffset;
ImU32 ColorMaj, ColorMin, ColorTick, ColorTxt, ColorBg, ColorHov, ColorAct, ColorHiLi;
char FormatSpec[16];
ImPlotFormatter Formatter;
void* FormatterData;
bool Enabled;
bool Vertical;
bool FitThisFrame;
bool HasRange;
bool HasFormatSpec;
bool ShowDefaultTicks;
bool Hovered;
bool Held;
ImPlotAxis() {
Flags = PreviousFlags = ImPlotAxisFlags_None;
Range.Min = 0;
Range.Max = 1;
FitExtents.Min = HUGE_VAL;
FitExtents.Max = -HUGE_VAL;
OrthoAxis = NULL;
LinkedMin = LinkedMax = NULL;
PickerLevel = 0;
Datum1 = Datum2 = 0;
PixelMin = PixelMax = 0;
LabelOffset = -1;
ColorMaj = ColorMin = ColorTick = ColorTxt = ColorBg = ColorHov = ColorAct = 0;
ColorHiLi = IM_COL32_BLACK_TRANS;
Formatter = NULL;
FormatterData = NULL;
Enabled = Hovered = Held = FitThisFrame = HasRange = HasFormatSpec = false;
ShowDefaultTicks = true;
}
inline void Reset() {
Enabled = false;
LabelOffset = -1;
HasFormatSpec = false;
Formatter = NULL;
FormatterData = NULL;
ShowDefaultTicks = true;
FitThisFrame = false;
FitExtents.Min = HUGE_VAL;
FitExtents.Max = -HUGE_VAL;
OrthoAxis = NULL;
Ticks.Reset();
}
inline bool SetMin(double _min, bool force=false) {
if (!force && IsLockedMin())
return false;
_min = ImConstrainNan(ImConstrainInf(_min));
if (ImHasFlag(Flags, ImPlotAxisFlags_LogScale))
_min = ImConstrainLog(_min);
if (ImHasFlag(Flags, ImPlotAxisFlags_Time))
_min = ImConstrainTime(_min);
if (_min >= Range.Max)
return false;
Range.Min = _min;
PickerTimeMin = ImPlotTime::FromDouble(Range.Min);
UpdateTransformCache();
return true;
};
inline bool SetMax(double _max, bool force=false) {
if (!force && IsLockedMax())
return false;
_max = ImConstrainNan(ImConstrainInf(_max));
if (ImHasFlag(Flags, ImPlotAxisFlags_LogScale))
_max = ImConstrainLog(_max);
if (ImHasFlag(Flags, ImPlotAxisFlags_Time))
_max = ImConstrainTime(_max);
if (_max <= Range.Min)
return false;
Range.Max = _max;
PickerTimeMax = ImPlotTime::FromDouble(Range.Max);
UpdateTransformCache();
return true;
};
inline void SetRange(double v1, double v2) {
Range.Min = ImMin(v1,v2);
Range.Max = ImMax(v1,v2);
Constrain();
PickerTimeMin = ImPlotTime::FromDouble(Range.Min);
PickerTimeMax = ImPlotTime::FromDouble(Range.Max);
UpdateTransformCache();
}
inline void SetRange(const ImPlotRange& range) {
SetRange(range.Min, range.Max);
}
inline void SetAspect(double unit_per_pix) {
double new_size = unit_per_pix * PixelSize();
double delta = (new_size - Range.Size()) * 0.5f;
if (IsLocked())
return;
else if (IsLockedMin() && !IsLockedMax())
SetRange(Range.Min, Range.Max + 2*delta);
else if (!IsLockedMin() && IsLockedMax())
SetRange(Range.Min - 2*delta, Range.Max);
else
SetRange(Range.Min - delta, Range.Max + delta);
}
inline float PixelSize() const { return ImAbs(PixelMax - PixelMin); }
inline double GetAspect() const { return Range.Size() / PixelSize(); }
inline void Constrain() {
Range.Min = ImConstrainNan(ImConstrainInf(Range.Min));
Range.Max = ImConstrainNan(ImConstrainInf(Range.Max));
if (IsLog()) {
Range.Min = ImConstrainLog(Range.Min);
Range.Max = ImConstrainLog(Range.Max);
}
if (IsTime()) {
Range.Min = ImConstrainTime(Range.Min);
Range.Max = ImConstrainTime(Range.Max);
}
if (Range.Max <= Range.Min)
Range.Max = Range.Min + DBL_EPSILON;
}
inline void UpdateTransformCache() {
LinM = (PixelMax - PixelMin) / Range.Size();
LogD = IsLog() ? ImLog10(Range.Max / Range.Min) : 0;
}
inline double PixelsToPlot(float pix) const {
double plt = (pix - PixelMin) / LinM + Range.Min;
if (IsLog()) {
double t = (plt - Range.Min) / Range.Size();
plt = ImPow(10, t * LogD) * Range.Min;
}
return plt;
}
inline float PlotToPixels(double plt) const {
if (IsLog()) {
plt = plt <= 0.0 ? IMPLOT_LOG_ZERO : plt;
double t = ImLog10(plt / Range.Min) / LogD;
plt = ImLerp(Range.Min, Range.Max, (float)t);
}
return (float)(PixelMin + LinM * (plt - Range.Min));
}
inline void ExtendFit(double v) {
if (!ImNanOrInf(v) && !(IsLog() && v <= 0)) {
FitExtents.Min = v < FitExtents.Min ? v : FitExtents.Min;
FitExtents.Max = v > FitExtents.Max ? v : FitExtents.Max;
}
}
inline void ExtendFitWith(ImPlotAxis& alt, double v, double v_alt) {
if (ImHasFlag(Flags, ImPlotAxisFlags_RangeFit) && !alt.Range.Contains(v_alt))
return;
if (!ImNanOrInf(v) && !(IsLog() && v <= 0)) {
FitExtents.Min = v < FitExtents.Min ? v : FitExtents.Min;
FitExtents.Max = v > FitExtents.Max ? v : FitExtents.Max;
}
}
inline void ApplyFit(float padding) {
const double ext_size = FitExtents.Size() * 0.5;
FitExtents.Min -= ext_size * padding;
FitExtents.Max += ext_size * padding;
if (!IsLockedMin() && !ImNanOrInf(FitExtents.Min))
Range.Min = FitExtents.Min;
if (!IsLockedMax() && !ImNanOrInf(FitExtents.Max))
Range.Max = FitExtents.Max;
if (ImAlmostEqual(Range.Min, Range.Max)) {
Range.Max += 0.5;
Range.Min -= 0.5;
}
Constrain();
UpdateTransformCache();
}
inline bool HasLabel() const { return LabelOffset != -1 && !ImHasFlag(Flags, ImPlotAxisFlags_NoLabel); }
inline bool HasGridLines() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoGridLines); }
inline bool HasTickLabels() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoTickLabels); }
inline bool HasTickMarks() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoTickMarks); }
inline bool WillRender() const { return Enabled && (HasGridLines() || HasTickLabels() || HasTickMarks()); }
inline bool IsOpposite() const { return ImHasFlag(Flags, ImPlotAxisFlags_Opposite); }
inline bool IsInverted() const { return ImHasFlag(Flags, ImPlotAxisFlags_Invert); }
inline bool IsForeground() const { return ImHasFlag(Flags, ImPlotAxisFlags_Foreground); }
inline bool IsAutoFitting() const { return ImHasFlag(Flags, ImPlotAxisFlags_AutoFit); }
inline bool CanInitFit() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoInitialFit) && !HasRange && !LinkedMin && !LinkedMax; }
inline bool IsRangeLocked() const { return HasRange && RangeCond == ImPlotCond_Always; }
inline bool IsLockedMin() const { return !Enabled || IsRangeLocked() || ImHasFlag(Flags, ImPlotAxisFlags_LockMin); }
inline bool IsLockedMax() const { return !Enabled || IsRangeLocked() || ImHasFlag(Flags, ImPlotAxisFlags_LockMax); }
inline bool IsLocked() const { return IsLockedMin() && IsLockedMax(); }
inline bool IsInputLockedMin() const { return IsLockedMin() || IsAutoFitting(); }
inline bool IsInputLockedMax() const { return IsLockedMax() || IsAutoFitting(); }
inline bool IsInputLocked() const { return IsLocked() || IsAutoFitting(); }
inline bool IsTime() const { return ImHasFlag(Flags, ImPlotAxisFlags_Time); }
inline bool IsLog() const { return ImHasFlag(Flags, ImPlotAxisFlags_LogScale); }
inline bool HasMenus() const { return !ImHasFlag(Flags, ImPlotAxisFlags_NoMenus); }
void PushLinks() {
if (LinkedMin) { *LinkedMin = Range.Min; }
if (LinkedMax) { *LinkedMax = Range.Max; }
}
void PullLinks() {
if (LinkedMin) { SetMin(*LinkedMin,true); }
if (LinkedMax) { SetMax(*LinkedMax,true); }
}
};
// Align plots group data
struct ImPlotAlignmentData {
bool Vertical;
float PadA;
float PadB;
float PadAMax;
float PadBMax;
ImPlotAlignmentData() {
Vertical = true;
PadA = PadB = PadAMax = PadBMax = 0;
}
void Begin() { PadAMax = PadBMax = 0; }
void Update(float& pad_a, float& pad_b, float& delta_a, float& delta_b) {
float bak_a = pad_a; float bak_b = pad_b;
if (PadAMax < pad_a) { PadAMax = pad_a; }
if (PadBMax < pad_b) { PadBMax = pad_b; }
if (pad_a < PadA) { pad_a = PadA; delta_a = pad_a - bak_a; } else { delta_a = 0; }
if (pad_b < PadB) { pad_b = PadB; delta_b = pad_b - bak_b; } else { delta_b = 0; }
}
void End() { PadA = PadAMax; PadB = PadBMax; }
void Reset() { PadA = PadB = PadAMax = PadBMax = 0; }
};
// State information for Plot items
struct ImPlotItem
{
ImGuiID ID;
ImU32 Color;
ImRect LegendHoverRect;
int NameOffset;
bool Show;
bool LegendHovered;
bool SeenThisFrame;
ImPlotItem() {
ID = 0;
NameOffset = -1;
Show = true;
SeenThisFrame = false;
LegendHovered = false;
}
~ImPlotItem() { ID = 0; }
};
// Holds Legend state
struct ImPlotLegend
{
ImPlotLegendFlags Flags;
ImPlotLegendFlags PreviousFlags;
ImPlotLocation Location;
ImPlotLocation PreviousLocation;
ImVector<int> Indices;
ImGuiTextBuffer Labels;
ImRect Rect;
bool Hovered;
bool Held;
bool CanGoInside;
ImPlotLegend() {
Flags = PreviousFlags = ImPlotLegendFlags_None;
CanGoInside = true;
Hovered = Held = false;
Location = ImPlotLocation_NorthWest;
}
void Reset() { Indices.shrink(0); Labels.Buf.shrink(0); }
};
// Holds Items and Legend data
struct ImPlotItemGroup
{
ImGuiID ID;
ImPlotLegend Legend;
ImPool<ImPlotItem> ItemPool;
int ColormapIdx;
ImPlotItemGroup() { ColormapIdx = 0; }
int GetItemCount() const { return ItemPool.GetBufSize(); }
ImGuiID GetItemID(const char* label_id) { return ImGui::GetID(label_id); /* GetIDWithSeed */ }
ImPlotItem* GetItem(ImGuiID id) { return ItemPool.GetByKey(id); }
ImPlotItem* GetItem(const char* label_id) { return GetItem(GetItemID(label_id)); }
ImPlotItem* GetOrAddItem(ImGuiID id) { return ItemPool.GetOrAddByKey(id); }
ImPlotItem* GetItemByIndex(int i) { return ItemPool.GetByIndex(i); }
int GetItemIndex(ImPlotItem* item) { return ItemPool.GetIndex(item); }
int GetLegendCount() const { return Legend.Indices.size(); }
ImPlotItem* GetLegendItem(int i) { return ItemPool.GetByIndex(Legend.Indices[i]); }
const char* GetLegendLabel(int i) { return Legend.Labels.Buf.Data + GetLegendItem(i)->NameOffset; }
void Reset() { ItemPool.Clear(); Legend.Reset(); ColormapIdx = 0; }
};
// Holds Plot state information that must persist after EndPlot
struct ImPlotPlot
{
ImGuiID ID;
ImPlotFlags Flags;
ImPlotFlags PreviousFlags;
ImPlotLocation MouseTextLocation;
ImPlotMouseTextFlags MouseTextFlags;
ImPlotAxis Axes[ImAxis_COUNT];
ImGuiTextBuffer TextBuffer;
ImPlotItemGroup Items;
ImAxis CurrentX;
ImAxis CurrentY;
ImRect FrameRect;
ImRect CanvasRect;
ImRect PlotRect;
ImRect AxesRect;
ImRect SelectRect;
ImVec2 SelectStart;
int TitleOffset;
bool JustCreated;
bool Initialized;
bool SetupLocked;
bool FitThisFrame;
bool Hovered;
bool Held;
bool Selecting;
bool Selected;
bool ContextLocked;
ImPlotPlot() {
Flags = PreviousFlags = ImPlotFlags_None;
for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i)
XAxis(i).Vertical = false;
for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i)
YAxis(i).Vertical = true;
SelectStart = ImVec2(0,0);
CurrentX = ImAxis_X1;
CurrentY = ImAxis_Y1;
MouseTextLocation = ImPlotLocation_South | ImPlotLocation_East;
MouseTextFlags = ImPlotMouseTextFlags_None;
TitleOffset = -1;
JustCreated = true;
Initialized = SetupLocked = FitThisFrame = false;
Hovered = Held = Selected = Selecting = ContextLocked = false;
}
inline bool IsInputLocked() const {
for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i) {
if (!XAxis(i).IsInputLocked())
return false;
}
for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i) {
if (!YAxis(i).IsInputLocked())
return false;
}
return true;
}
inline void ClearTextBuffer() { TextBuffer.Buf.shrink(0); }
inline void SetTitle(const char* title) {
if (title && ImGui::FindRenderedTextEnd(title, NULL) != title) {
TitleOffset = TextBuffer.size();
TextBuffer.append(title, title + strlen(title) + 1);
}
else {
TitleOffset = -1;
}
}
inline bool HasTitle() const { return TitleOffset != -1 && !ImHasFlag(Flags, ImPlotFlags_NoTitle); }
inline const char* GetTitle() const { return TextBuffer.Buf.Data + TitleOffset; }
inline ImPlotAxis& XAxis(int i) { return Axes[ImAxis_X1 + i]; }
inline const ImPlotAxis& XAxis(int i) const { return Axes[ImAxis_X1 + i]; }
inline ImPlotAxis& YAxis(int i) { return Axes[ImAxis_Y1 + i]; }
inline const ImPlotAxis& YAxis(int i) const { return Axes[ImAxis_Y1 + i]; }
inline int EnabledAxesX() {
int cnt = 0;
for (int i = 0; i < IMPLOT_NUM_X_AXES; ++i)
cnt += XAxis(i).Enabled;
return cnt;
}
inline int EnabledAxesY() {
int cnt = 0;
for (int i = 0; i < IMPLOT_NUM_Y_AXES; ++i)
cnt += YAxis(i).Enabled;
return cnt;
}
inline void SetAxisLabel(ImPlotAxis& axis, const char* label) {
if (label && ImGui::FindRenderedTextEnd(label, NULL) != label) {
axis.LabelOffset = TextBuffer.size();
TextBuffer.append(label, label + strlen(label) + 1);
}
else {
axis.LabelOffset = -1;
}
}
inline const char* GetAxisLabel(const ImPlotAxis& axis) const { return TextBuffer.Buf.Data + axis.LabelOffset; }
};
// Holds subplot data that must persist afer EndSubplot
struct ImPlotSubplot {
ImGuiID ID;
ImPlotSubplotFlags Flags;
ImPlotSubplotFlags PreviousFlags;
ImPlotItemGroup Items;
int Rows;
int Cols;
int CurrentIdx;
ImRect FrameRect;
ImRect GridRect;
ImVec2 CellSize;
ImVector<ImPlotAlignmentData> RowAlignmentData;
ImVector<ImPlotAlignmentData> ColAlignmentData;
ImVector<float> RowRatios;
ImVector<float> ColRatios;
ImVector<ImPlotRange> RowLinkData;
ImVector<ImPlotRange> ColLinkData;
float TempSizes[2];
bool FrameHovered;
bool HasTitle;
ImPlotSubplot() {
Rows = Cols = CurrentIdx = 0;
FrameHovered = false;
Items.Legend.Location = ImPlotLocation_North;
Items.Legend.Flags = ImPlotLegendFlags_Horizontal|ImPlotLegendFlags_Outside;
Items.Legend.CanGoInside = false;
HasTitle = false;
}
};
// Temporary data storage for upcoming plot
struct ImPlotNextPlotData
{
ImPlotCond RangeCond[ImAxis_COUNT];
ImPlotRange Range[ImAxis_COUNT];
bool HasRange[ImAxis_COUNT];
bool Fit[ImAxis_COUNT];
double* LinkedMin[ImAxis_COUNT];
double* LinkedMax[ImAxis_COUNT];
ImPlotNextPlotData() { Reset(); }
void Reset() {
for (int i = 0; i < ImAxis_COUNT; ++i) {
HasRange[i] = false;
Fit[i] = false;
LinkedMin[i] = LinkedMax[i] = NULL;
}
}
};
// Temporary data storage for upcoming item
struct ImPlotNextItemData {
ImVec4 Colors[5]; // ImPlotCol_Line, ImPlotCol_Fill, ImPlotCol_MarkerOutline, ImPlotCol_MarkerFill, ImPlotCol_ErrorBar
float LineWeight;
ImPlotMarker Marker;
float MarkerSize;
float MarkerWeight;
float FillAlpha;
float ErrorBarSize;
float ErrorBarWeight;
float DigitalBitHeight;
float DigitalBitGap;
bool RenderLine;
bool RenderFill;
bool RenderMarkerLine;
bool RenderMarkerFill;
bool HasHidden;
bool Hidden;
ImPlotCond HiddenCond;
ImPlotNextItemData() { Reset(); }
void Reset() {
for (int i = 0; i < 5; ++i)
Colors[i] = IMPLOT_AUTO_COL;
LineWeight = MarkerSize = MarkerWeight = FillAlpha = ErrorBarSize = ErrorBarWeight = DigitalBitHeight = DigitalBitGap = IMPLOT_AUTO;
Marker = IMPLOT_AUTO;
HasHidden = Hidden = false;
}
};
// Holds state information that must persist between calls to BeginPlot()/EndPlot()
struct ImPlotContext {
// Plot States
ImPool<ImPlotPlot> Plots;
ImPool<ImPlotSubplot> Subplots;
ImPlotPlot* CurrentPlot;
ImPlotSubplot* CurrentSubplot;
ImPlotItemGroup* CurrentItems;
ImPlotItem* CurrentItem;
ImPlotItem* PreviousItem;
// Tick Marks and Labels
ImPlotTickCollection CTicks;
// Annotation and Tabs
ImPlotAnnotationCollection Annotations;
ImPlotTagCollection Tags;
// Flags
bool ChildWindowMade;
// Style and Colormaps
ImPlotStyle Style;
ImVector<ImGuiColorMod> ColorModifiers;
ImVector<ImGuiStyleMod> StyleModifiers;
ImPlotColormapData ColormapData;
ImVector<ImPlotColormap> ColormapModifiers;
// Time
tm Tm;
// Temp data for general use
ImVector<double> TempDouble1, TempDouble2;
ImVector<int> TempInt1;
// Misc
int DigitalPlotItemCnt;
int DigitalPlotOffset;
ImPlotNextPlotData NextPlotData;
ImPlotNextItemData NextItemData;
ImPlotInputMap InputMap;
bool OpenContextThisFrame;
ImGuiTextBuffer MousePosStringBuilder;
// Align plots
ImPool<ImPlotAlignmentData> AlignmentData;
ImPlotAlignmentData* CurrentAlignmentH;
ImPlotAlignmentData* CurrentAlignmentV;
};
//-----------------------------------------------------------------------------
// [SECTION] Internal API
// No guarantee of forward compatibility here!
//-----------------------------------------------------------------------------
namespace ImPlot {
//-----------------------------------------------------------------------------
// [SECTION] Context Utils
//-----------------------------------------------------------------------------
// Initializes an ImPlotContext
IMPLOT_API void Initialize(ImPlotContext* ctx);
// Resets an ImPlot context for the next call to BeginPlot
IMPLOT_API void ResetCtxForNextPlot(ImPlotContext* ctx);
// Resets an ImPlot context for the next call to BeginAlignedPlots
IMPLOT_API void ResetCtxForNextAlignedPlots(ImPlotContext* ctx);
// Resets an ImPlot context for the next call to BeginSubplot
IMPLOT_API void ResetCtxForNextSubplot(ImPlotContext* ctx);
//-----------------------------------------------------------------------------
// [SECTION] Plot Utils
//-----------------------------------------------------------------------------
// Gets a plot from the current ImPlotContext
IMPLOT_API ImPlotPlot* GetPlot(const char* title);
// Gets the current plot from the current ImPlotContext
IMPLOT_API ImPlotPlot* GetCurrentPlot();
// Busts the cache for every plot in the current context
IMPLOT_API void BustPlotCache();
// Shows a plot's context menu.
IMPLOT_API void ShowPlotContextMenu(ImPlotPlot& plot);
//-----------------------------------------------------------------------------
// [SECTION] Setup Utils
//-----------------------------------------------------------------------------
// Lock Setup and call SetupFinish if necessary.
static inline void SetupLock() {
if (!GImPlot->CurrentPlot->SetupLocked)
SetupFinish();
GImPlot->CurrentPlot->SetupLocked = true;
}
//-----------------------------------------------------------------------------
// [SECTION] Subplot Utils
//-----------------------------------------------------------------------------
// Advances to next subplot
IMPLOT_API void SubplotNextCell();
// Shows a subplot's context menu.
IMPLOT_API void ShowSubplotsContextMenu(ImPlotSubplot& subplot);
//-----------------------------------------------------------------------------
// [SECTION] Item Utils
//-----------------------------------------------------------------------------
// Begins a new item. Returns false if the item should not be plotted. Pushes PlotClipRect.
IMPLOT_API bool BeginItem(const char* label_id, ImPlotCol recolor_from = -1);
// Ends an item (call only if BeginItem returns true). Pops PlotClipRect.
IMPLOT_API void EndItem();
// Register or get an existing item from the current plot.
IMPLOT_API ImPlotItem* RegisterOrGetItem(const char* label_id, bool* just_created = NULL);
// Get a plot item from the current plot.
IMPLOT_API ImPlotItem* GetItem(const char* label_id);
// Gets the current item.
IMPLOT_API ImPlotItem* GetCurrentItem();
// Busts the cache for every item for every plot in the current context.
IMPLOT_API void BustItemCache();
//-----------------------------------------------------------------------------
// [SECTION] Axis Utils
//-----------------------------------------------------------------------------
// Returns true if any enabled axis is locked from user input.
static inline bool AnyAxesInputLocked(ImPlotAxis* axes, int count) {
for (int i = 0; i < count; ++i) {
if (axes[i].Enabled && axes[i].IsInputLocked())
return true;
}
return false;
}
// Returns true if all enabled axes are locked from user input.
static inline bool AllAxesInputLocked(ImPlotAxis* axes, int count) {
for (int i = 0; i < count; ++i) {
if (axes[i].Enabled && !axes[i].IsInputLocked())
return false;
}
return true;
}
static inline bool AnyAxesHeld(ImPlotAxis* axes, int count) {
for (int i = 0; i < count; ++i) {
if (axes[i].Enabled && axes[i].Held)
return true;
}
return false;
}
static inline bool AnyAxesHovered(ImPlotAxis* axes, int count) {
for (int i = 0; i < count; ++i) {
if (axes[i].Enabled && axes[i].Hovered)
return true;
}
return false;
}
// Gets the XY scale for the current plot and y-axis (TODO)
static inline ImPlotScale GetCurrentScale() {
ImPlotPlot& plot = *GetCurrentPlot();
ImPlotAxis& x = plot.Axes[plot.CurrentX];
ImPlotAxis& y = plot.Axes[plot.CurrentY];
if (!x.IsLog() && !y.IsLog())
return ImPlotScale_LinLin;
else if (x.IsLog() && !y.IsLog())
return ImPlotScale_LogLin;
else if (!x.IsLog() && y.IsLog())
return ImPlotScale_LinLog;
else
return ImPlotScale_LogLog;
}
// Returns true if the user has requested data to be fit.
static inline bool FitThisFrame() {
return GImPlot->CurrentPlot->FitThisFrame;
}
// Extends the current plot's axes so that it encompasses a vertical line at x
static inline void FitPointX(double x) {
ImPlotPlot& plot = *GetCurrentPlot();
ImPlotAxis& x_axis = plot.Axes[plot.CurrentX];
x_axis.ExtendFit(x);
}
// Extends the current plot's axes so that it encompasses a horizontal line at y
static inline void FitPointY(double y) {
ImPlotPlot& plot = *GetCurrentPlot();
ImPlotAxis& y_axis = plot.Axes[plot.CurrentY];
y_axis.ExtendFit(y);
}
// Extends the current plot's axes so that it encompasses point p
static inline void FitPoint(const ImPlotPoint& p) {
ImPlotPlot& plot = *GetCurrentPlot();
ImPlotAxis& x_axis = plot.Axes[plot.CurrentX];
ImPlotAxis& y_axis = plot.Axes[plot.CurrentY];
x_axis.ExtendFitWith(y_axis, p.x, p.y);
y_axis.ExtendFitWith(x_axis, p.y, p.x);
}
// Returns true if two ranges overlap
static inline bool RangesOverlap(const ImPlotRange& r1, const ImPlotRange& r2)
{ return r1.Min <= r2.Max && r2.Min <= r1.Max; }
// Shows an axis's context menu.
IMPLOT_API void ShowAxisContextMenu(ImPlotAxis& axis, ImPlotAxis* equal_axis, bool time_allowed = false);
//-----------------------------------------------------------------------------
// [SECTION] Legend Utils
//-----------------------------------------------------------------------------
// Gets the position of an inner rect that is located inside of an outer rect according to an ImPlotLocation and padding amount.
IMPLOT_API ImVec2 GetLocationPos(const ImRect& outer_rect, const ImVec2& inner_size, ImPlotLocation location, const ImVec2& pad = ImVec2(0,0));
// Calculates the bounding box size of a legend
IMPLOT_API ImVec2 CalcLegendSize(ImPlotItemGroup& items, const ImVec2& pad, const ImVec2& spacing, bool vertical);
// Renders legend entries into a bounding box
IMPLOT_API bool ShowLegendEntries(ImPlotItemGroup& items, const ImRect& legend_bb, bool interactable, const ImVec2& pad, const ImVec2& spacing, bool vertical, ImDrawList& DrawList);
// Shows an alternate legend for the plot identified by #title_id, outside of the plot frame (can be called before or after of Begin/EndPlot but must occur in the same ImGui window!).
IMPLOT_API void ShowAltLegend(const char* title_id, bool vertical = true, const ImVec2 size = ImVec2(0,0), bool interactable = true);
// Shows an legends's context menu.
IMPLOT_API bool ShowLegendContextMenu(ImPlotLegend& legend, bool visible);
//-----------------------------------------------------------------------------
// [SECTION] Tick Utils
//-----------------------------------------------------------------------------
// Label a tick with time formatting.
IMPLOT_API void LabelTickTime(ImPlotTick& tick, ImGuiTextBuffer& buffer, const ImPlotTime& t, ImPlotDateTimeFmt fmt);
// Populates a list of ImPlotTicks with normal spaced and formatted ticks
IMPLOT_API void AddTicksDefault(const ImPlotRange& range, float pix, bool vertical, ImPlotTickCollection& ticks, ImPlotFormatter formatter, void* data);
// Populates a list of ImPlotTicks with logarithmic space and formatted ticks
IMPLOT_API void AddTicksLogarithmic(const ImPlotRange& range, float pix, bool vertical, ImPlotTickCollection& ticks, ImPlotFormatter formatter, void* data);
// Populates a list of ImPlotTicks with custom spaced and labeled ticks
IMPLOT_API void AddTicksCustom(const double* values, const char* const labels[], int n, ImPlotTickCollection& ticks, ImPlotFormatter formatter, void* data);
// Populates a list of ImPlotTicks with time formatted ticks.
IMPLOT_API void AddTicksTime(const ImPlotRange& range, float plot_width, ImPlotTickCollection& ticks);
// Create a a string label for a an axis value
IMPLOT_API void LabelAxisValue(const ImPlotAxis& axis, double value, char* buff, int size, bool round = false);
//-----------------------------------------------------------------------------
// [SECTION] Styling Utils
//-----------------------------------------------------------------------------
// Get styling data for next item (call between Begin/EndItem)
static inline const ImPlotNextItemData& GetItemData() { return GImPlot->NextItemData; }
// Returns true if a color is set to be automatically determined
static inline bool IsColorAuto(const ImVec4& col) { return col.w == -1; }
// Returns true if a style color is set to be automaticaly determined
static inline bool IsColorAuto(ImPlotCol idx) { return IsColorAuto(GImPlot->Style.Colors[idx]); }
// Returns the automatically deduced style color
IMPLOT_API ImVec4 GetAutoColor(ImPlotCol idx);
// Returns the style color whether it is automatic or custom set
static inline ImVec4 GetStyleColorVec4(ImPlotCol idx) { return IsColorAuto(idx) ? GetAutoColor(idx) : GImPlot->Style.Colors[idx]; }
static inline ImU32 GetStyleColorU32(ImPlotCol idx) { return ImGui::ColorConvertFloat4ToU32(GetStyleColorVec4(idx)); }
// Draws vertical text. The position is the bottom left of the text rect.
IMPLOT_API void AddTextVertical(ImDrawList *DrawList, ImVec2 pos, ImU32 col, const char* text_begin, const char* text_end = NULL);
// Draws multiline horizontal text centered.
IMPLOT_API void AddTextCentered(ImDrawList* DrawList, ImVec2 top_center, ImU32 col, const char* text_begin, const char* text_end = NULL);
// Calculates the size of vertical text
static inline ImVec2 CalcTextSizeVertical(const char *text) {
ImVec2 sz = ImGui::CalcTextSize(text);
return ImVec2(sz.y, sz.x);
}
// Returns white or black text given background color
static inline ImU32 CalcTextColor(const ImVec4& bg) { return (bg.x * 0.299f + bg.y * 0.587f + bg.z * 0.114f) > 0.5f ? IM_COL32_BLACK : IM_COL32_WHITE; }
static inline ImU32 CalcTextColor(ImU32 bg) { return CalcTextColor(ImGui::ColorConvertU32ToFloat4(bg)); }
// Lightens or darkens a color for hover
static inline ImU32 CalcHoverColor(ImU32 col) { return ImMixU32(col, CalcTextColor(col), 32); }
// Clamps a label position so that it fits a rect defined by Min/Max
static inline ImVec2 ClampLabelPos(ImVec2 pos, const ImVec2& size, const ImVec2& Min, const ImVec2& Max) {
if (pos.x < Min.x) pos.x = Min.x;
if (pos.y < Min.y) pos.y = Min.y;
if ((pos.x + size.x) > Max.x) pos.x = Max.x - size.x;
if ((pos.y + size.y) > Max.y) pos.y = Max.y - size.y;
return pos;
}
// Returns a color from the Color map given an index >= 0 (modulo will be performed).
IMPLOT_API ImU32 GetColormapColorU32(int idx, ImPlotColormap cmap);
// Returns the next unused colormap color and advances the colormap. Can be used to skip colors if desired.
IMPLOT_API ImU32 NextColormapColorU32();
// Linearly interpolates a color from the current colormap given t between 0 and 1.
IMPLOT_API ImU32 SampleColormapU32(float t, ImPlotColormap cmap);
// Render a colormap bar
IMPLOT_API void RenderColorBar(const ImU32* colors, int size, ImDrawList& DrawList, const ImRect& bounds, bool vert, bool reversed, bool continuous);
//-----------------------------------------------------------------------------
// [SECTION] Math and Misc Utils
//-----------------------------------------------------------------------------
// Rounds x to powers of 2,5 and 10 for generating axis labels (from Graphics Gems 1 Chapter 11.2)
IMPLOT_API double NiceNum(double x, bool round);
// Computes order of magnitude of double.
static inline int OrderOfMagnitude(double val) { return val == 0 ? 0 : (int)(floor(log10(fabs(val)))); }
// Returns the precision required for a order of magnitude.
static inline int OrderToPrecision(int order) { return order > 0 ? 0 : 1 - order; }
// Returns a floating point precision to use given a value
static inline int Precision(double val) { return OrderToPrecision(OrderOfMagnitude(val)); }
// Round a value to a given precision
static inline double RoundTo(double val, int prec) { double p = pow(10,(double)prec); return floor(val*p+0.5)/p; }
// Returns the intersection point of two lines A and B (assumes they are not parallel!)
static inline ImVec2 Intersection(const ImVec2& a1, const ImVec2& a2, const ImVec2& b1, const ImVec2& b2) {
float v1 = (a1.x * a2.y - a1.y * a2.x); float v2 = (b1.x * b2.y - b1.y * b2.x);
float v3 = ((a1.x - a2.x) * (b1.y - b2.y) - (a1.y - a2.y) * (b1.x - b2.x));
return ImVec2((v1 * (b1.x - b2.x) - v2 * (a1.x - a2.x)) / v3, (v1 * (b1.y - b2.y) - v2 * (a1.y - a2.y)) / v3);
}
// Fills a buffer with n samples linear interpolated from vmin to vmax
template <typename T>
void FillRange(ImVector<T>& buffer, int n, T vmin, T vmax) {
buffer.resize(n);
T step = (vmax - vmin) / (n - 1);
for (int i = 0; i < n; ++i) {
buffer[i] = vmin + i * step;
}
}
// Calculate histogram bin counts and widths
template <typename T>
static inline void CalculateBins(const T* values, int count, ImPlotBin meth, const ImPlotRange& range, int& bins_out, double& width_out) {
switch (meth) {
case ImPlotBin_Sqrt:
bins_out = (int)ceil(sqrt(count));
break;
case ImPlotBin_Sturges:
bins_out = (int)ceil(1.0 + log2(count));
break;
case ImPlotBin_Rice:
bins_out = (int)ceil(2 * cbrt(count));
break;
case ImPlotBin_Scott:
width_out = 3.49 * ImStdDev(values, count) / cbrt(count);
bins_out = (int)round(range.Size() / width_out);
break;
}
width_out = range.Size() / bins_out;
}
//-----------------------------------------------------------------------------
// Time Utils
//-----------------------------------------------------------------------------
// Returns true if year is leap year (366 days long)
static inline bool IsLeapYear(int year) {
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
}
// Returns the number of days in a month, accounting for Feb. leap years. #month is zero indexed.
static inline int GetDaysInMonth(int year, int month) {
static const int days[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
return days[month] + (int)(month == 1 && IsLeapYear(year));
}
// Make a UNIX timestamp from a tm struct expressed in UTC time (i.e. GMT timezone).
IMPLOT_API ImPlotTime MkGmtTime(struct tm *ptm);
// Make a tm struct expressed in UTC time (i.e. GMT timezone) from a UNIX timestamp.
IMPLOT_API tm* GetGmtTime(const ImPlotTime& t, tm* ptm);
// Make a UNIX timestamp from a tm struct expressed in local time.
IMPLOT_API ImPlotTime MkLocTime(struct tm *ptm);
// Make a tm struct expressed in local time from a UNIX timestamp.
IMPLOT_API tm* GetLocTime(const ImPlotTime& t, tm* ptm);
// NB: The following functions only work if there is a current ImPlotContext because the
// internal tm struct is owned by the context! They are aware of ImPlotStyle.UseLocalTime.
// Make a timestamp from time components.
// year[1970-3000], month[0-11], day[1-31], hour[0-23], min[0-59], sec[0-59], us[0,999999]
IMPLOT_API ImPlotTime MakeTime(int year, int month = 0, int day = 1, int hour = 0, int min = 0, int sec = 0, int us = 0);
// Get year component from timestamp [1970-3000]
IMPLOT_API int GetYear(const ImPlotTime& t);
// Adds or subtracts time from a timestamp. #count > 0 to add, < 0 to subtract.
IMPLOT_API ImPlotTime AddTime(const ImPlotTime& t, ImPlotTimeUnit unit, int count);
// Rounds a timestamp down to nearest unit.
IMPLOT_API ImPlotTime FloorTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Rounds a timestamp up to the nearest unit.
IMPLOT_API ImPlotTime CeilTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Rounds a timestamp up or down to the nearest unit.
IMPLOT_API ImPlotTime RoundTime(const ImPlotTime& t, ImPlotTimeUnit unit);
// Combines the date of one timestamp with the time-of-day of another timestamp.
IMPLOT_API ImPlotTime CombineDateTime(const ImPlotTime& date_part, const ImPlotTime& time_part);
// Formats the time part of timestamp t into a buffer according to #fmt
IMPLOT_API int FormatTime(const ImPlotTime& t, char* buffer, int size, ImPlotTimeFmt fmt, bool use_24_hr_clk);
// Formats the date part of timestamp t into a buffer according to #fmt
IMPLOT_API int FormatDate(const ImPlotTime& t, char* buffer, int size, ImPlotDateFmt fmt, bool use_iso_8601);
// Formats the time and/or date parts of a timestamp t into a buffer according to #fmt
IMPLOT_API int FormatDateTime(const ImPlotTime& t, char* buffer, int size, ImPlotDateTimeFmt fmt);
// Shows a date picker widget block (year/month/day).
// #level = 0 for day, 1 for month, 2 for year. Modified by user interaction.
// #t will be set when a day is clicked and the function will return true.
// #t1 and #t2 are optional dates to highlight.
IMPLOT_API bool ShowDatePicker(const char* id, int* level, ImPlotTime* t, const ImPlotTime* t1 = NULL, const ImPlotTime* t2 = NULL);
// Shows a time picker widget block (hour/min/sec).
// #t will be set when a new hour, minute, or sec is selected or am/pm is toggled, and the function will return true.
IMPLOT_API bool ShowTimePicker(const char* id, ImPlotTime* t);
} // namespace ImPlot