1
0
mirror of synced 2024-12-12 07:51:05 +01:00
ImHex/lib/libimhex/include/hex/pattern_language/parser.hpp
2022-03-17 00:10:16 +01:00

291 lines
10 KiB
C++

#pragma once
#include <hex.hpp>
#include <hex/helpers/utils.hpp>
#include <hex/pattern_language/error.hpp>
#include <hex/pattern_language/token.hpp>
#include <hex/pattern_language/ast/ast_node.hpp>
#include <hex/pattern_language/ast/ast_node_rvalue.hpp>
#include <hex/pattern_language/ast/ast_node_attribute.hpp>
#include <hex/pattern_language/ast/ast_node_type_decl.hpp>
#include <unordered_map>
#include <stdexcept>
#include <utility>
#include <vector>
namespace hex::pl {
class Parser {
public:
using TokenIter = std::vector<Token>::const_iterator;
Parser() = default;
~Parser() = default;
std::optional<std::vector<std::shared_ptr<ASTNode>>> parse(const std::vector<Token> &tokens);
const std::optional<PatternLanguageError> &getError() { return this->m_error; }
private:
std::optional<PatternLanguageError> m_error;
TokenIter m_curr;
TokenIter m_originalPosition, m_partOriginalPosition;
std::unordered_map<std::string, std::shared_ptr<ASTNode>> m_types;
std::vector<TokenIter> m_matchedOptionals;
std::vector<std::vector<std::string>> m_currNamespace;
u32 getLineNumber(i32 index) const {
return this->m_curr[index].lineNumber;
}
template<typename T>
std::unique_ptr<T> create(T *node) {
node->setLineNumber(this->getLineNumber(-1));
return std::unique_ptr<T>(node);
}
template<typename T>
const T &getValue(i32 index) const {
auto value = std::get_if<T>(&this->m_curr[index].value);
if (value == nullptr)
throwParserError("failed to decode token. Invalid type.", getLineNumber(index));
return *value;
}
Token::Type getType(i32 index) const {
return this->m_curr[index].type;
}
std::string getNamespacePrefixedName(const std::string &name) {
std::string result;
for (const auto &part : this->m_currNamespace.back()) {
result += part + "::";
}
result += name;
return result;
}
std::unique_ptr<ASTNode> parseFunctionCall();
std::unique_ptr<ASTNode> parseStringLiteral();
std::string parseNamespaceResolution();
std::unique_ptr<ASTNode> parseScopeResolution();
std::unique_ptr<ASTNode> parseRValue();
std::unique_ptr<ASTNode> parseRValue(ASTNodeRValue::Path &path);
std::unique_ptr<ASTNode> parseFactor();
std::unique_ptr<ASTNode> parseCastExpression();
std::unique_ptr<ASTNode> parseUnaryExpression();
std::unique_ptr<ASTNode> parseMultiplicativeExpression();
std::unique_ptr<ASTNode> parseAdditiveExpression();
std::unique_ptr<ASTNode> parseShiftExpression();
std::unique_ptr<ASTNode> parseBinaryAndExpression();
std::unique_ptr<ASTNode> parseBinaryXorExpression();
std::unique_ptr<ASTNode> parseBinaryOrExpression();
std::unique_ptr<ASTNode> parseBooleanAnd();
std::unique_ptr<ASTNode> parseBooleanXor();
std::unique_ptr<ASTNode> parseBooleanOr();
std::unique_ptr<ASTNode> parseRelationExpression();
std::unique_ptr<ASTNode> parseEqualityExpression();
std::unique_ptr<ASTNode> parseTernaryConditional();
std::unique_ptr<ASTNode> parseMathematicalExpression();
std::unique_ptr<ASTNode> parseFunctionDefinition();
std::unique_ptr<ASTNode> parseFunctionVariableDecl();
std::unique_ptr<ASTNode> parseFunctionStatement();
std::unique_ptr<ASTNode> parseFunctionVariableAssignment(const std::string &lvalue);
std::unique_ptr<ASTNode> parseFunctionVariableCompoundAssignment(const std::string &lvalue);
std::unique_ptr<ASTNode> parseFunctionControlFlowStatement();
std::vector<std::unique_ptr<ASTNode>> parseStatementBody();
std::unique_ptr<ASTNode> parseFunctionConditional();
std::unique_ptr<ASTNode> parseFunctionWhileLoop();
std::unique_ptr<ASTNode> parseFunctionForLoop();
void parseAttribute(Attributable *currNode);
std::unique_ptr<ASTNode> parseConditional();
std::unique_ptr<ASTNode> parseWhileStatement();
std::unique_ptr<ASTNodeTypeDecl> parseType(bool allowFunctionTypes = false);
std::shared_ptr<ASTNodeTypeDecl> parseUsingDeclaration();
std::unique_ptr<ASTNode> parsePadding();
std::unique_ptr<ASTNode> parseMemberVariable(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parseMemberArrayVariable(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parseMemberPointerVariable(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parseMember();
std::shared_ptr<ASTNodeTypeDecl> parseStruct();
std::shared_ptr<ASTNodeTypeDecl> parseUnion();
std::shared_ptr<ASTNodeTypeDecl> parseEnum();
std::shared_ptr<ASTNodeTypeDecl> parseBitfield();
std::unique_ptr<ASTNode> parseVariablePlacement(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parseArrayVariablePlacement(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parsePointerVariablePlacement(const std::shared_ptr<ASTNodeTypeDecl> &type);
std::unique_ptr<ASTNode> parsePlacement();
std::vector<std::shared_ptr<ASTNode>> parseNamespace();
std::vector<std::shared_ptr<ASTNode>> parseStatements();
std::shared_ptr<ASTNodeTypeDecl> addType(const std::string &name, std::unique_ptr<ASTNode> &&node, std::optional<std::endian> endian = std::nullopt);
std::vector<std::shared_ptr<ASTNode>> parseTillToken(Token::Type endTokenType, const auto value) {
std::vector<std::shared_ptr<ASTNode>> program;
while (this->m_curr->type != endTokenType || (*this->m_curr) != value) {
for (auto &statement : parseStatements())
program.push_back(std::move(statement));
}
this->m_curr++;
return program;
}
[[noreturn]] void throwParserError(const std::string &error, i32 token = -1) const {
throw PatternLanguageError(this->m_curr[token].lineNumber, "Parser: " + error);
}
/* Token consuming */
enum class Setting
{
};
constexpr static auto Normal = static_cast<Setting>(0);
constexpr static auto Not = static_cast<Setting>(1);
bool begin() {
this->m_originalPosition = this->m_curr;
this->m_matchedOptionals.clear();
return true;
}
bool partBegin() {
this->m_partOriginalPosition = this->m_curr;
this->m_matchedOptionals.clear();
return true;
}
void reset() {
this->m_curr = this->m_originalPosition;
}
void partReset() {
this->m_curr = this->m_partOriginalPosition;
}
bool resetIfFailed(bool value) {
if (!value) reset();
return value;
}
template<Setting S = Normal>
bool sequenceImpl() {
if constexpr (S == Normal)
return true;
else if constexpr (S == Not)
return false;
else
__builtin_unreachable();
}
template<Setting S = Normal>
bool sequenceImpl(Token::Type type, auto value, auto... args) {
if constexpr (S == Normal) {
if (!peek(type, value)) {
partReset();
return false;
}
this->m_curr++;
if (!sequenceImpl<Normal>(args...)) {
partReset();
return false;
}
return true;
} else if constexpr (S == Not) {
if (!peek(type, value))
return true;
this->m_curr++;
if (!sequenceImpl<Normal>(args...))
return true;
partReset();
return false;
} else
__builtin_unreachable();
}
template<Setting S = Normal>
bool sequence(Token::Type type, auto value, auto... args) {
return partBegin() && sequenceImpl<S>(type, value, args...);
}
template<Setting S = Normal>
bool oneOfImpl() {
if constexpr (S == Normal)
return false;
else if constexpr (S == Not)
return true;
else
__builtin_unreachable();
}
template<Setting S = Normal>
bool oneOfImpl(Token::Type type, auto value, auto... args) {
if constexpr (S == Normal)
return sequenceImpl<Normal>(type, value) || oneOfImpl(args...);
else if constexpr (S == Not)
return sequenceImpl<Not>(type, value) && oneOfImpl(args...);
else
__builtin_unreachable();
}
template<Setting S = Normal>
bool oneOf(Token::Type type, auto value, auto... args) {
return partBegin() && oneOfImpl<S>(type, value, args...);
}
bool variantImpl(Token::Type type1, auto value1, Token::Type type2, auto value2) {
if (!peek(type1, value1)) {
if (!peek(type2, value2)) {
partReset();
return false;
}
}
this->m_curr++;
return true;
}
bool variant(Token::Type type1, auto value1, Token::Type type2, auto value2) {
return partBegin() && variantImpl(type1, value1, type2, value2);
}
bool optionalImpl(Token::Type type, auto value) {
if (peek(type, value)) {
this->m_matchedOptionals.push_back(this->m_curr);
this->m_curr++;
}
return true;
}
bool optional(Token::Type type, auto value) {
return partBegin() && optionalImpl(type, value);
}
bool peek(Token::Type type, auto value, i32 index = 0) {
return this->m_curr[index].type == type && this->m_curr[index] == value;
}
};
}