2023-05-10 21:07:02 +02:00
|
|
|
|
from multiprocessing import cpu_count
|
|
|
|
|
import threading
|
|
|
|
|
from time import sleep
|
|
|
|
|
from subprocess import Popen
|
|
|
|
|
from time import sleep
|
|
|
|
|
import torch, os, traceback, sys, warnings, shutil, numpy as np
|
|
|
|
|
import faiss
|
|
|
|
|
from random import shuffle
|
|
|
|
|
|
|
|
|
|
now_dir = os.getcwd()
|
|
|
|
|
sys.path.append(now_dir)
|
|
|
|
|
tmp = os.path.join(now_dir, "TEMP")
|
|
|
|
|
shutil.rmtree(tmp, ignore_errors=True)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
|
|
|
|
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
os.makedirs(tmp, exist_ok=True)
|
|
|
|
|
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
|
|
|
|
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
|
|
|
|
os.environ["TEMP"] = tmp
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
torch.manual_seed(114514)
|
|
|
|
|
from i18n import I18nAuto
|
|
|
|
|
import ffmpeg
|
|
|
|
|
|
|
|
|
|
i18n = I18nAuto()
|
|
|
|
|
# 判断是否有能用来训练和加速推理的N卡
|
|
|
|
|
ncpu = cpu_count()
|
|
|
|
|
ngpu = torch.cuda.device_count()
|
|
|
|
|
gpu_infos = []
|
|
|
|
|
mem = []
|
|
|
|
|
if (not torch.cuda.is_available()) or ngpu == 0:
|
|
|
|
|
if_gpu_ok = False
|
|
|
|
|
else:
|
|
|
|
|
if_gpu_ok = False
|
|
|
|
|
for i in range(ngpu):
|
|
|
|
|
gpu_name = torch.cuda.get_device_name(i)
|
|
|
|
|
if (
|
|
|
|
|
"10" in gpu_name
|
|
|
|
|
or "16" in gpu_name
|
|
|
|
|
or "20" in gpu_name
|
|
|
|
|
or "30" in gpu_name
|
|
|
|
|
or "40" in gpu_name
|
|
|
|
|
or "A2" in gpu_name.upper()
|
|
|
|
|
or "A3" in gpu_name.upper()
|
|
|
|
|
or "A4" in gpu_name.upper()
|
|
|
|
|
or "P4" in gpu_name.upper()
|
|
|
|
|
or "A50" in gpu_name.upper()
|
|
|
|
|
or "70" in gpu_name
|
|
|
|
|
or "80" in gpu_name
|
|
|
|
|
or "90" in gpu_name
|
|
|
|
|
or "M4" in gpu_name.upper()
|
|
|
|
|
or "T4" in gpu_name.upper()
|
|
|
|
|
or "TITAN" in gpu_name.upper()
|
|
|
|
|
): # A10#A100#V100#A40#P40#M40#K80#A4500
|
|
|
|
|
if_gpu_ok = True # 至少有一张能用的N卡
|
|
|
|
|
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
|
|
|
|
mem.append(
|
|
|
|
|
int(
|
|
|
|
|
torch.cuda.get_device_properties(i).total_memory
|
|
|
|
|
/ 1024
|
|
|
|
|
/ 1024
|
|
|
|
|
/ 1024
|
|
|
|
|
+ 0.4
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
if if_gpu_ok == True and len(gpu_infos) > 0:
|
|
|
|
|
gpu_info = "\n".join(gpu_infos)
|
|
|
|
|
default_batch_size = min(mem) // 2
|
|
|
|
|
else:
|
|
|
|
|
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
|
|
|
|
default_batch_size = 1
|
|
|
|
|
gpus = "-".join([i[0] for i in gpu_infos])
|
|
|
|
|
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
|
|
|
|
from scipy.io import wavfile
|
|
|
|
|
from fairseq import checkpoint_utils
|
|
|
|
|
import gradio as gr
|
|
|
|
|
import logging
|
|
|
|
|
from vc_infer_pipeline import VC
|
|
|
|
|
from config import Config
|
|
|
|
|
from infer_uvr5 import _audio_pre_
|
|
|
|
|
from my_utils import load_audio
|
|
|
|
|
from train.process_ckpt import show_info, change_info, merge, extract_small_model
|
|
|
|
|
|
|
|
|
|
config = Config()
|
|
|
|
|
# from trainset_preprocess_pipeline import PreProcess
|
|
|
|
|
logging.getLogger("numba").setLevel(logging.WARNING)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ToolButton(gr.Button, gr.components.FormComponent):
|
|
|
|
|
"""Small button with single emoji as text, fits inside gradio forms"""
|
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
super().__init__(variant="tool", **kwargs)
|
|
|
|
|
|
|
|
|
|
def get_block_name(self):
|
|
|
|
|
return "button"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hubert_model = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_hubert():
|
|
|
|
|
global hubert_model
|
|
|
|
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
|
|
|
|
["hubert_base.pt"],
|
|
|
|
|
suffix="",
|
|
|
|
|
)
|
|
|
|
|
hubert_model = models[0]
|
|
|
|
|
hubert_model = hubert_model.to(config.device)
|
|
|
|
|
if config.is_half:
|
|
|
|
|
hubert_model = hubert_model.half()
|
|
|
|
|
else:
|
|
|
|
|
hubert_model = hubert_model.float()
|
|
|
|
|
hubert_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weight_root = "weights"
|
|
|
|
|
weight_uvr5_root = "uvr5_weights"
|
2023-05-12 21:29:30 +02:00
|
|
|
|
index_root = "logs"
|
2023-05-10 21:07:02 +02:00
|
|
|
|
names = []
|
|
|
|
|
for name in os.listdir(weight_root):
|
|
|
|
|
if name.endswith(".pth"):
|
|
|
|
|
names.append(name)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
index_paths = []
|
2023-05-12 21:29:30 +02:00
|
|
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
|
|
|
for name in files:
|
|
|
|
|
if name.endswith(".index") and "trained" not in name:
|
2023-05-12 21:43:05 +02:00
|
|
|
|
index_paths.append("%s/%s" % (root, name))
|
2023-05-10 21:07:02 +02:00
|
|
|
|
uvr5_names = []
|
|
|
|
|
for name in os.listdir(weight_uvr5_root):
|
|
|
|
|
if name.endswith(".pth"):
|
|
|
|
|
uvr5_names.append(name.replace(".pth", ""))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def vc_single(
|
|
|
|
|
sid,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
input_audio_path,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
f0_up_key,
|
|
|
|
|
f0_file,
|
|
|
|
|
f0_method,
|
|
|
|
|
file_index,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index2,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy,
|
|
|
|
|
index_rate,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius,
|
|
|
|
|
resample_sr,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
|
|
|
|
global tgt_sr, net_g, vc, hubert_model
|
2023-05-12 21:29:30 +02:00
|
|
|
|
if input_audio_path is None:
|
2023-05-10 21:07:02 +02:00
|
|
|
|
return "You need to upload an audio", None
|
|
|
|
|
f0_up_key = int(f0_up_key)
|
|
|
|
|
try:
|
2023-05-12 21:29:30 +02:00
|
|
|
|
audio = load_audio(input_audio_path, 16000)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
times = [0, 0, 0]
|
|
|
|
|
if hubert_model == None:
|
|
|
|
|
load_hubert()
|
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
|
|
file_index = (
|
2023-05-12 21:43:05 +02:00
|
|
|
|
(
|
|
|
|
|
file_index.strip(" ")
|
|
|
|
|
.strip('"')
|
|
|
|
|
.strip("\n")
|
|
|
|
|
.strip('"')
|
|
|
|
|
.strip(" ")
|
|
|
|
|
.replace("trained", "added")
|
|
|
|
|
)
|
|
|
|
|
if file_index != ""
|
|
|
|
|
else file_index2
|
|
|
|
|
) # 防止小白写错,自动帮他替换掉
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy = (
|
|
|
|
|
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
# )
|
|
|
|
|
audio_opt = vc.pipeline(
|
|
|
|
|
hubert_model,
|
|
|
|
|
net_g,
|
|
|
|
|
sid,
|
|
|
|
|
audio,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
input_audio_path,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
times,
|
|
|
|
|
f0_up_key,
|
|
|
|
|
f0_method,
|
|
|
|
|
file_index,
|
|
|
|
|
# file_big_npy,
|
|
|
|
|
index_rate,
|
|
|
|
|
if_f0,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius,
|
|
|
|
|
tgt_sr,
|
|
|
|
|
resample_sr,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
f0_file=f0_file,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
|
|
|
|
tgt_sr = resample_sr
|
|
|
|
|
index_info = (
|
|
|
|
|
"Using index:%s." % file_index
|
|
|
|
|
if os.path.exists(file_index)
|
|
|
|
|
else "Index not used."
|
|
|
|
|
)
|
|
|
|
|
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
|
|
|
|
index_info,
|
|
|
|
|
times[0],
|
|
|
|
|
times[1],
|
|
|
|
|
times[2],
|
|
|
|
|
), (tgt_sr, audio_opt)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
except:
|
|
|
|
|
info = traceback.format_exc()
|
|
|
|
|
print(info)
|
|
|
|
|
return info, (None, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def vc_multi(
|
|
|
|
|
sid,
|
|
|
|
|
dir_path,
|
|
|
|
|
opt_root,
|
|
|
|
|
paths,
|
|
|
|
|
f0_up_key,
|
|
|
|
|
f0_method,
|
|
|
|
|
file_index,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index2,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy,
|
|
|
|
|
index_rate,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius,
|
|
|
|
|
resample_sr,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
):
|
|
|
|
|
try:
|
|
|
|
|
dir_path = (
|
|
|
|
|
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
) # 防止小白拷路径头尾带了空格和"和回车
|
|
|
|
|
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
os.makedirs(opt_root, exist_ok=True)
|
|
|
|
|
try:
|
|
|
|
|
if dir_path != "":
|
|
|
|
|
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
|
|
|
|
else:
|
|
|
|
|
paths = [path.name for path in paths]
|
|
|
|
|
except:
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
paths = [path.name for path in paths]
|
|
|
|
|
infos = []
|
|
|
|
|
for path in paths:
|
|
|
|
|
info, opt = vc_single(
|
|
|
|
|
sid,
|
|
|
|
|
path,
|
|
|
|
|
f0_up_key,
|
|
|
|
|
None,
|
|
|
|
|
f0_method,
|
|
|
|
|
file_index,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index2,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy,
|
|
|
|
|
index_rate,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius,
|
|
|
|
|
resample_sr,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
if "Success" in info:
|
2023-05-10 21:07:02 +02:00
|
|
|
|
try:
|
|
|
|
|
tgt_sr, audio_opt = opt
|
|
|
|
|
wavfile.write(
|
|
|
|
|
"%s/%s" % (opt_root, os.path.basename(path)), tgt_sr, audio_opt
|
|
|
|
|
)
|
|
|
|
|
except:
|
2023-05-12 21:29:30 +02:00
|
|
|
|
info += traceback.format_exc()
|
2023-05-10 21:07:02 +02:00
|
|
|
|
infos.append("%s->%s" % (os.path.basename(path), info))
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
except:
|
|
|
|
|
yield traceback.format_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg):
|
|
|
|
|
infos = []
|
|
|
|
|
try:
|
|
|
|
|
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
save_root_vocal = (
|
|
|
|
|
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
)
|
|
|
|
|
save_root_ins = (
|
|
|
|
|
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
|
|
|
|
)
|
|
|
|
|
pre_fun = _audio_pre_(
|
|
|
|
|
agg=int(agg),
|
|
|
|
|
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
|
|
|
|
device=config.device,
|
|
|
|
|
is_half=config.is_half,
|
|
|
|
|
)
|
|
|
|
|
if inp_root != "":
|
|
|
|
|
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
|
|
|
|
else:
|
|
|
|
|
paths = [path.name for path in paths]
|
|
|
|
|
for path in paths:
|
|
|
|
|
inp_path = os.path.join(inp_root, path)
|
|
|
|
|
need_reformat = 1
|
|
|
|
|
done = 0
|
|
|
|
|
try:
|
|
|
|
|
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
|
|
|
|
if (
|
|
|
|
|
info["streams"][0]["channels"] == 2
|
|
|
|
|
and info["streams"][0]["sample_rate"] == "44100"
|
|
|
|
|
):
|
|
|
|
|
need_reformat = 0
|
|
|
|
|
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal)
|
|
|
|
|
done = 1
|
|
|
|
|
except:
|
|
|
|
|
need_reformat = 1
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
if need_reformat == 1:
|
|
|
|
|
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path))
|
|
|
|
|
os.system(
|
|
|
|
|
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
|
|
|
|
% (inp_path, tmp_path)
|
|
|
|
|
)
|
|
|
|
|
inp_path = tmp_path
|
|
|
|
|
try:
|
|
|
|
|
if done == 0:
|
|
|
|
|
pre_fun._path_audio_(inp_path, save_root_ins, save_root_vocal)
|
|
|
|
|
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
except:
|
|
|
|
|
infos.append(
|
|
|
|
|
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
|
|
|
|
)
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
except:
|
|
|
|
|
infos.append(traceback.format_exc())
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
finally:
|
|
|
|
|
try:
|
|
|
|
|
del pre_fun.model
|
|
|
|
|
del pre_fun
|
|
|
|
|
except:
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
print("clean_empty_cache")
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 一个选项卡全局只能有一个音色
|
|
|
|
|
def get_vc(sid):
|
|
|
|
|
global n_spk, tgt_sr, net_g, vc, cpt
|
2023-05-12 21:43:05 +02:00
|
|
|
|
if sid == "" or sid == []:
|
2023-05-10 21:07:02 +02:00
|
|
|
|
global hubert_model
|
|
|
|
|
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
|
|
|
|
print("clean_empty_cache")
|
|
|
|
|
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
|
|
|
|
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
###楼下不这么折腾清理不干净
|
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
|
|
if if_f0 == 1:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsid(
|
|
|
|
|
*cpt["config"], is_half=config.is_half
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
|
|
|
del net_g, cpt
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
cpt = None
|
|
|
|
|
return {"visible": False, "__type__": "update"}
|
|
|
|
|
person = "%s/%s" % (weight_root, sid)
|
|
|
|
|
print("loading %s" % person)
|
|
|
|
|
cpt = torch.load(person, map_location="cpu")
|
|
|
|
|
tgt_sr = cpt["config"][-1]
|
|
|
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
|
|
|
if_f0 = cpt.get("f0", 1)
|
|
|
|
|
if if_f0 == 1:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
|
|
|
|
else:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
|
|
|
|
del net_g.enc_q
|
|
|
|
|
print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净, 真奇葩
|
|
|
|
|
net_g.eval().to(config.device)
|
|
|
|
|
if config.is_half:
|
|
|
|
|
net_g = net_g.half()
|
|
|
|
|
else:
|
|
|
|
|
net_g = net_g.float()
|
|
|
|
|
vc = VC(tgt_sr, config)
|
|
|
|
|
n_spk = cpt["config"][-3]
|
|
|
|
|
return {"visible": True, "maximum": n_spk, "__type__": "update"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_choices():
|
|
|
|
|
names = []
|
|
|
|
|
for name in os.listdir(weight_root):
|
|
|
|
|
if name.endswith(".pth"):
|
|
|
|
|
names.append(name)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
index_paths = []
|
2023-05-12 21:29:30 +02:00
|
|
|
|
for root, dirs, files in os.walk(index_root, topdown=False):
|
|
|
|
|
for name in files:
|
|
|
|
|
if name.endswith(".index") and "trained" not in name:
|
|
|
|
|
index_paths.append("%s/%s" % (root, name))
|
2023-05-12 21:43:05 +02:00
|
|
|
|
return {"choices": sorted(names), "__type__": "update"}, {
|
|
|
|
|
"choices": sorted(index_paths),
|
|
|
|
|
"__type__": "update",
|
|
|
|
|
}
|
2023-05-10 21:07:02 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def clean():
|
|
|
|
|
return {"value": "", "__type__": "update"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_f0(if_f0_3, sr2): # np7, f0method8,pretrained_G14,pretrained_D15
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
return (
|
|
|
|
|
{"visible": True, "__type__": "update"},
|
|
|
|
|
{"visible": True, "__type__": "update"},
|
|
|
|
|
"pretrained/f0G%s.pth" % sr2,
|
|
|
|
|
"pretrained/f0D%s.pth" % sr2,
|
|
|
|
|
)
|
|
|
|
|
return (
|
|
|
|
|
{"visible": False, "__type__": "update"},
|
|
|
|
|
{"visible": False, "__type__": "update"},
|
|
|
|
|
"pretrained/G%s.pth" % sr2,
|
|
|
|
|
"pretrained/D%s.pth" % sr2,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sr_dict = {
|
|
|
|
|
"32k": 32000,
|
|
|
|
|
"40k": 40000,
|
|
|
|
|
"48k": 48000,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def if_done(done, p):
|
|
|
|
|
while 1:
|
|
|
|
|
if p.poll() == None:
|
|
|
|
|
sleep(0.5)
|
|
|
|
|
else:
|
|
|
|
|
break
|
|
|
|
|
done[0] = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def if_done_multi(done, ps):
|
|
|
|
|
while 1:
|
|
|
|
|
# poll==None代表进程未结束
|
|
|
|
|
# 只要有一个进程未结束都不停
|
|
|
|
|
flag = 1
|
|
|
|
|
for p in ps:
|
|
|
|
|
if p.poll() == None:
|
|
|
|
|
flag = 0
|
|
|
|
|
sleep(0.5)
|
|
|
|
|
break
|
|
|
|
|
if flag == 1:
|
|
|
|
|
break
|
|
|
|
|
done[0] = True
|
|
|
|
|
|
|
|
|
|
|
2023-05-12 21:29:30 +02:00
|
|
|
|
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
2023-05-10 21:07:02 +02:00
|
|
|
|
sr = sr_dict[sr]
|
|
|
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
|
|
|
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
|
|
|
|
f.close()
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
|
|
|
|
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
|
|
|
|
+ str(config.noparallel)
|
|
|
|
|
)
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
|
|
|
|
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
|
|
|
done = [False]
|
|
|
|
|
threading.Thread(
|
|
|
|
|
target=if_done,
|
|
|
|
|
args=(
|
|
|
|
|
done,
|
|
|
|
|
p,
|
|
|
|
|
),
|
|
|
|
|
).start()
|
|
|
|
|
while 1:
|
|
|
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
|
|
|
yield (f.read())
|
|
|
|
|
sleep(1)
|
|
|
|
|
if done[0] == True:
|
|
|
|
|
break
|
|
|
|
|
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
|
|
|
|
log = f.read()
|
|
|
|
|
print(log)
|
|
|
|
|
yield log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
|
|
|
|
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir):
|
|
|
|
|
gpus = gpus.split("-")
|
|
|
|
|
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
|
|
|
|
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
|
|
|
|
f.close()
|
|
|
|
|
if if_f0:
|
|
|
|
|
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s" % (
|
|
|
|
|
now_dir,
|
|
|
|
|
exp_dir,
|
|
|
|
|
n_p,
|
|
|
|
|
f0method,
|
|
|
|
|
)
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
|
|
|
|
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
|
|
|
done = [False]
|
|
|
|
|
threading.Thread(
|
|
|
|
|
target=if_done,
|
|
|
|
|
args=(
|
|
|
|
|
done,
|
|
|
|
|
p,
|
|
|
|
|
),
|
|
|
|
|
).start()
|
|
|
|
|
while 1:
|
|
|
|
|
with open(
|
|
|
|
|
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
|
|
|
|
) as f:
|
|
|
|
|
yield (f.read())
|
|
|
|
|
sleep(1)
|
|
|
|
|
if done[0] == True:
|
|
|
|
|
break
|
|
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
|
|
log = f.read()
|
|
|
|
|
print(log)
|
|
|
|
|
yield log
|
|
|
|
|
####对不同part分别开多进程
|
|
|
|
|
"""
|
|
|
|
|
n_part=int(sys.argv[1])
|
|
|
|
|
i_part=int(sys.argv[2])
|
|
|
|
|
i_gpu=sys.argv[3]
|
|
|
|
|
exp_dir=sys.argv[4]
|
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
|
|
|
|
"""
|
|
|
|
|
leng = len(gpus)
|
|
|
|
|
ps = []
|
|
|
|
|
for idx, n_g in enumerate(gpus):
|
|
|
|
|
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s/logs/%s" % (
|
|
|
|
|
config.device,
|
|
|
|
|
leng,
|
|
|
|
|
idx,
|
|
|
|
|
n_g,
|
|
|
|
|
now_dir,
|
|
|
|
|
exp_dir,
|
|
|
|
|
)
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(
|
|
|
|
|
cmd, shell=True, cwd=now_dir
|
|
|
|
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
|
|
|
|
ps.append(p)
|
|
|
|
|
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
|
|
|
|
done = [False]
|
|
|
|
|
threading.Thread(
|
|
|
|
|
target=if_done_multi,
|
|
|
|
|
args=(
|
|
|
|
|
done,
|
|
|
|
|
ps,
|
|
|
|
|
),
|
|
|
|
|
).start()
|
|
|
|
|
while 1:
|
|
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
|
|
yield (f.read())
|
|
|
|
|
sleep(1)
|
|
|
|
|
if done[0] == True:
|
|
|
|
|
break
|
|
|
|
|
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
|
|
|
|
log = f.read()
|
|
|
|
|
print(log)
|
|
|
|
|
yield log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def change_sr2(sr2, if_f0_3):
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
return "pretrained/f0G%s.pth" % sr2, "pretrained/f0D%s.pth" % sr2
|
|
|
|
|
else:
|
|
|
|
|
return "pretrained/G%s.pth" % sr2, "pretrained/D%s.pth" % sr2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
|
|
|
|
def click_train(
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
if_f0_3,
|
|
|
|
|
spk_id5,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
batch_size12,
|
|
|
|
|
if_save_latest13,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
gpus16,
|
|
|
|
|
if_cache_gpu17,
|
|
|
|
|
):
|
|
|
|
|
# 生成filelist
|
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
|
|
|
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
|
|
|
|
co256_dir = "%s/3_feature256" % (exp_dir)
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
f0_dir = "%s/2a_f0" % (exp_dir)
|
|
|
|
|
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
|
|
|
|
names = (
|
|
|
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(co256_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
|
|
|
[name.split(".")[0] for name in os.listdir(co256_dir)]
|
|
|
|
|
)
|
|
|
|
|
opt = []
|
|
|
|
|
for name in names:
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
|
|
|
% (
|
|
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
co256_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
f0_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
spk_id5,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
|
|
|
% (
|
|
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
co256_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
spk_id5,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
|
|
|
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
|
|
|
|
|
% (now_dir, sr2, now_dir, spk_id5)
|
|
|
|
|
)
|
|
|
|
|
shuffle(opt)
|
|
|
|
|
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
|
|
|
|
f.write("\n".join(opt))
|
|
|
|
|
print("write filelist done")
|
|
|
|
|
# 生成config#无需生成config
|
|
|
|
|
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
|
|
|
|
print("use gpus:", gpus16)
|
|
|
|
|
if gpus16:
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
|
|
|
% (
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
1 if if_f0_3 else 0,
|
|
|
|
|
batch_size12,
|
|
|
|
|
gpus16,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
|
|
|
% (
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
1 if if_f0_3 else 0,
|
|
|
|
|
batch_size12,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
print(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
|
p.wait()
|
|
|
|
|
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# but4.click(train_index, [exp_dir1], info3)
|
|
|
|
|
def train_index(exp_dir1):
|
|
|
|
|
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
|
|
os.makedirs(exp_dir, exist_ok=True)
|
|
|
|
|
feature_dir = "%s/3_feature256" % (exp_dir)
|
|
|
|
|
if os.path.exists(feature_dir) == False:
|
|
|
|
|
return "请先进行特征提取!"
|
|
|
|
|
listdir_res = list(os.listdir(feature_dir))
|
|
|
|
|
if len(listdir_res) == 0:
|
|
|
|
|
return "请先进行特征提取!"
|
|
|
|
|
npys = []
|
|
|
|
|
for name in sorted(listdir_res):
|
|
|
|
|
phone = np.load("%s/%s" % (feature_dir, name))
|
|
|
|
|
npys.append(phone)
|
|
|
|
|
big_npy = np.concatenate(npys, 0)
|
|
|
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
|
|
|
np.random.shuffle(big_npy_idx)
|
|
|
|
|
big_npy = big_npy[big_npy_idx]
|
|
|
|
|
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
|
|
|
|
# n_ivf = big_npy.shape[0] // 39
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
|
|
|
infos = []
|
|
|
|
|
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
|
|
|
|
# index = faiss.index_factory(256, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
|
|
|
|
infos.append("training")
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
index_ivf = faiss.extract_index_ivf(index) #
|
|
|
|
|
index_ivf.nprobe = 1
|
|
|
|
|
index.train(big_npy)
|
|
|
|
|
faiss.write_index(
|
|
|
|
|
index,
|
|
|
|
|
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
|
|
|
)
|
|
|
|
|
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan.index'%(exp_dir,n_ivf))
|
|
|
|
|
infos.append("adding")
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
batch_size_add = 8192
|
|
|
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
|
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
|
|
|
faiss.write_index(
|
|
|
|
|
index,
|
|
|
|
|
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
|
|
|
|
|
)
|
|
|
|
|
infos.append("成功构建索引,added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
|
|
|
|
|
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan.index'%(exp_dir,n_ivf))
|
|
|
|
|
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan.index"%(n_ivf))
|
|
|
|
|
yield "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
|
|
|
|
def train1key(
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
if_f0_3,
|
|
|
|
|
trainset_dir4,
|
|
|
|
|
spk_id5,
|
|
|
|
|
np7,
|
|
|
|
|
f0method8,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
batch_size12,
|
|
|
|
|
if_save_latest13,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
gpus16,
|
|
|
|
|
if_cache_gpu17,
|
|
|
|
|
):
|
|
|
|
|
infos = []
|
|
|
|
|
|
|
|
|
|
def get_info_str(strr):
|
|
|
|
|
infos.append(strr)
|
|
|
|
|
return "\n".join(infos)
|
|
|
|
|
|
|
|
|
|
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
|
|
|
|
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
|
|
|
|
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
|
|
|
|
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
|
|
|
|
feature256_dir = "%s/3_feature256" % model_log_dir
|
|
|
|
|
|
|
|
|
|
os.makedirs(model_log_dir, exist_ok=True)
|
|
|
|
|
#########step1:处理数据
|
|
|
|
|
open(preprocess_log_path, "w").close()
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
2023-05-12 21:29:30 +02:00
|
|
|
|
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
+ str(config.noparallel)
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(i18n("step1:正在处理数据"))
|
|
|
|
|
yield get_info_str(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True)
|
|
|
|
|
p.wait()
|
|
|
|
|
with open(preprocess_log_path, "r") as f:
|
|
|
|
|
print(f.read())
|
|
|
|
|
#########step2a:提取音高
|
|
|
|
|
open(extract_f0_feature_log_path, "w")
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
yield get_info_str("step2a:正在提取音高")
|
|
|
|
|
cmd = config.python_cmd + " extract_f0_print.py %s %s %s" % (
|
|
|
|
|
model_log_dir,
|
|
|
|
|
np7,
|
|
|
|
|
f0method8,
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
|
p.wait()
|
|
|
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
|
|
|
print(f.read())
|
|
|
|
|
else:
|
|
|
|
|
yield get_info_str(i18n("step2a:无需提取音高"))
|
|
|
|
|
#######step2b:提取特征
|
|
|
|
|
yield get_info_str(i18n("step2b:正在提取特征"))
|
|
|
|
|
gpus = gpus16.split("-")
|
|
|
|
|
leng = len(gpus)
|
|
|
|
|
ps = []
|
|
|
|
|
for idx, n_g in enumerate(gpus):
|
|
|
|
|
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s" % (
|
|
|
|
|
config.device,
|
|
|
|
|
leng,
|
|
|
|
|
idx,
|
|
|
|
|
n_g,
|
|
|
|
|
model_log_dir,
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(cmd)
|
|
|
|
|
p = Popen(
|
|
|
|
|
cmd, shell=True, cwd=now_dir
|
|
|
|
|
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
|
|
|
|
ps.append(p)
|
|
|
|
|
for p in ps:
|
|
|
|
|
p.wait()
|
|
|
|
|
with open(extract_f0_feature_log_path, "r") as f:
|
|
|
|
|
print(f.read())
|
|
|
|
|
#######step3a:训练模型
|
|
|
|
|
yield get_info_str(i18n("step3a:正在训练模型"))
|
|
|
|
|
# 生成filelist
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
f0_dir = "%s/2a_f0" % model_log_dir
|
|
|
|
|
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
|
|
|
|
names = (
|
|
|
|
|
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(feature256_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
|
|
|
|
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
|
|
|
|
[name.split(".")[0] for name in os.listdir(feature256_dir)]
|
|
|
|
|
)
|
|
|
|
|
opt = []
|
|
|
|
|
for name in names:
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
|
|
|
|
% (
|
|
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
feature256_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
f0_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
f0nsf_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
spk_id5,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/%s.wav|%s/%s.npy|%s"
|
|
|
|
|
% (
|
|
|
|
|
gt_wavs_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
feature256_dir.replace("\\", "\\\\"),
|
|
|
|
|
name,
|
|
|
|
|
spk_id5,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
if if_f0_3:
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
|
|
|
|
% (now_dir, sr2, now_dir, now_dir, now_dir, spk_id5)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
for _ in range(2):
|
|
|
|
|
opt.append(
|
|
|
|
|
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature256/mute.npy|%s"
|
|
|
|
|
% (now_dir, sr2, now_dir, spk_id5)
|
|
|
|
|
)
|
|
|
|
|
shuffle(opt)
|
|
|
|
|
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
|
|
|
|
f.write("\n".join(opt))
|
|
|
|
|
yield get_info_str("write filelist done")
|
|
|
|
|
if gpus16:
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
|
|
|
% (
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
1 if if_f0_3 else 0,
|
|
|
|
|
batch_size12,
|
|
|
|
|
gpus16,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
cmd = (
|
|
|
|
|
config.python_cmd
|
|
|
|
|
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s -pg %s -pd %s -l %s -c %s"
|
|
|
|
|
% (
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
1 if if_f0_3 else 0,
|
|
|
|
|
batch_size12,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
1 if if_save_latest13 == i18n("是") else 0,
|
|
|
|
|
1 if if_cache_gpu17 == i18n("是") else 0,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(cmd)
|
|
|
|
|
p = Popen(cmd, shell=True, cwd=now_dir)
|
|
|
|
|
p.wait()
|
|
|
|
|
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
|
|
|
|
#######step3b:训练索引
|
|
|
|
|
npys = []
|
|
|
|
|
listdir_res = list(os.listdir(feature256_dir))
|
|
|
|
|
for name in sorted(listdir_res):
|
|
|
|
|
phone = np.load("%s/%s" % (feature256_dir, name))
|
|
|
|
|
npys.append(phone)
|
|
|
|
|
big_npy = np.concatenate(npys, 0)
|
|
|
|
|
|
|
|
|
|
big_npy_idx = np.arange(big_npy.shape[0])
|
|
|
|
|
np.random.shuffle(big_npy_idx)
|
|
|
|
|
big_npy = big_npy[big_npy_idx]
|
|
|
|
|
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
|
|
|
|
|
|
|
|
|
# n_ivf = big_npy.shape[0] // 39
|
|
|
|
|
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
|
|
|
|
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
|
|
|
|
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
|
|
|
|
|
yield get_info_str("training index")
|
|
|
|
|
index_ivf = faiss.extract_index_ivf(index) #
|
|
|
|
|
index_ivf.nprobe = 1
|
|
|
|
|
index.train(big_npy)
|
|
|
|
|
faiss.write_index(
|
|
|
|
|
index,
|
|
|
|
|
"%s/trained_IVF%s_Flat_nprobe_%s.index"
|
|
|
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe),
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str("adding index")
|
|
|
|
|
batch_size_add = 8192
|
|
|
|
|
for i in range(0, big_npy.shape[0], batch_size_add):
|
|
|
|
|
index.add(big_npy[i : i + batch_size_add])
|
|
|
|
|
faiss.write_index(
|
|
|
|
|
index,
|
|
|
|
|
"%s/added_IVF%s_Flat_nprobe_%s.index"
|
|
|
|
|
% (model_log_dir, n_ivf, index_ivf.nprobe),
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(
|
|
|
|
|
"成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)
|
|
|
|
|
)
|
|
|
|
|
yield get_info_str(i18n("全流程结束!"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
|
|
|
|
def change_info_(ckpt_path):
|
|
|
|
|
if (
|
|
|
|
|
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
|
|
|
|
|
== False
|
|
|
|
|
):
|
|
|
|
|
return {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
try:
|
|
|
|
|
with open(
|
|
|
|
|
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
|
|
|
|
) as f:
|
|
|
|
|
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
|
|
|
|
sr, f0 = info["sample_rate"], info["if_f0"]
|
|
|
|
|
return sr, str(f0)
|
|
|
|
|
except:
|
|
|
|
|
traceback.print_exc()
|
|
|
|
|
return {"__type__": "update"}, {"__type__": "update"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM
|
|
|
|
|
from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
|
|
|
|
|
hidden_channels = 256 # hidden_channels,为768Vec做准备
|
|
|
|
|
cpt = torch.load(ModelPath, map_location="cpu")
|
|
|
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
|
|
|
|
print(*cpt["config"])
|
|
|
|
|
|
|
|
|
|
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
|
|
|
|
|
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
|
|
|
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
|
|
|
|
test_pitchf = torch.rand(1, 200) # nsf基频
|
|
|
|
|
test_ds = torch.LongTensor([0]) # 说话人ID
|
|
|
|
|
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
|
|
|
|
|
|
|
|
|
device = "cpu" # 导出时设备(不影响使用模型)
|
|
|
|
|
|
|
|
|
|
if MoeVS:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsidM(
|
|
|
|
|
*cpt["config"], is_half=False
|
|
|
|
|
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
|
|
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
|
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
|
|
|
|
output_names = [
|
|
|
|
|
"audio",
|
|
|
|
|
]
|
|
|
|
|
torch.onnx.export(
|
|
|
|
|
net_g,
|
|
|
|
|
(
|
|
|
|
|
test_phone.to(device),
|
|
|
|
|
test_phone_lengths.to(device),
|
|
|
|
|
test_pitch.to(device),
|
|
|
|
|
test_pitchf.to(device),
|
|
|
|
|
test_ds.to(device),
|
|
|
|
|
test_rnd.to(device),
|
|
|
|
|
),
|
|
|
|
|
ExportedPath,
|
|
|
|
|
dynamic_axes={
|
|
|
|
|
"phone": [1],
|
|
|
|
|
"pitch": [1],
|
|
|
|
|
"pitchf": [1],
|
|
|
|
|
"rnd": [2],
|
|
|
|
|
},
|
|
|
|
|
do_constant_folding=False,
|
|
|
|
|
opset_version=16,
|
|
|
|
|
verbose=False,
|
|
|
|
|
input_names=input_names,
|
|
|
|
|
output_names=output_names,
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
net_g = SynthesizerTrnMs256NSFsidO(
|
|
|
|
|
*cpt["config"], is_half=False
|
|
|
|
|
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
|
|
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
|
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"]
|
|
|
|
|
output_names = [
|
|
|
|
|
"audio",
|
|
|
|
|
]
|
|
|
|
|
torch.onnx.export(
|
|
|
|
|
net_g,
|
|
|
|
|
(
|
|
|
|
|
test_phone.to(device),
|
|
|
|
|
test_phone_lengths.to(device),
|
|
|
|
|
test_pitch.to(device),
|
|
|
|
|
test_pitchf.to(device),
|
|
|
|
|
test_ds.to(device),
|
|
|
|
|
),
|
|
|
|
|
ExportedPath,
|
|
|
|
|
dynamic_axes={
|
|
|
|
|
"phone": [1],
|
|
|
|
|
"pitch": [1],
|
|
|
|
|
"pitchf": [1],
|
|
|
|
|
},
|
|
|
|
|
do_constant_folding=False,
|
|
|
|
|
opset_version=16,
|
|
|
|
|
verbose=False,
|
|
|
|
|
input_names=input_names,
|
|
|
|
|
output_names=output_names,
|
|
|
|
|
)
|
|
|
|
|
return "Finished"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as app:
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>."
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Tabs():
|
|
|
|
|
with gr.TabItem(i18n("模型推理")):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names))
|
2023-05-12 21:29:30 +02:00
|
|
|
|
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
2023-05-10 21:07:02 +02:00
|
|
|
|
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
|
|
|
|
spk_item = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=2333,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("请选择说话人id"),
|
|
|
|
|
value=0,
|
|
|
|
|
visible=False,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
clean_button.click(fn=clean, inputs=[], outputs=[sid0])
|
|
|
|
|
sid0.change(
|
|
|
|
|
fn=get_vc,
|
|
|
|
|
inputs=[sid0],
|
|
|
|
|
outputs=[spk_item],
|
|
|
|
|
)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
vc_transform0 = gr.Number(
|
|
|
|
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
|
|
|
|
)
|
|
|
|
|
input_audio0 = gr.Textbox(
|
|
|
|
|
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
2023-05-12 21:29:30 +02:00
|
|
|
|
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\冬之花clip1.wav",
|
2023-05-10 21:07:02 +02:00
|
|
|
|
)
|
|
|
|
|
f0method0 = gr.Radio(
|
|
|
|
|
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
|
|
|
|
|
choices=["pm", "harvest"],
|
|
|
|
|
value="pm",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
filter_radius0 = gr.Slider(
|
2023-05-12 21:29:30 +02:00
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=7,
|
|
|
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
|
|
|
value=3,
|
|
|
|
|
step=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
with gr.Column():
|
|
|
|
|
file_index1 = gr.Textbox(
|
2023-05-12 21:29:30 +02:00
|
|
|
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
|
|
|
|
value="",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
file_index2 = gr.Dropdown(
|
|
|
|
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
|
|
|
|
choices=sorted(index_paths),
|
2023-05-10 21:07:02 +02:00
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
refresh_button.click(
|
|
|
|
|
fn=change_choices, inputs=[], outputs=[sid0, file_index2]
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy1 = gr.Textbox(
|
|
|
|
|
# label=i18n("特征文件路径"),
|
|
|
|
|
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
|
|
|
|
# interactive=True,
|
|
|
|
|
# )
|
|
|
|
|
index_rate1 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=1,
|
|
|
|
|
label=i18n("检索特征占比"),
|
|
|
|
|
value=0.76,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
resample_sr0 = gr.Slider(
|
2023-05-12 21:29:30 +02:00
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=48000,
|
|
|
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
|
|
|
value=0,
|
|
|
|
|
step=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
|
|
|
|
but0 = gr.Button(i18n("转换"), variant="primary")
|
|
|
|
|
with gr.Column():
|
|
|
|
|
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
|
|
|
|
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
|
|
|
|
but0.click(
|
|
|
|
|
vc_single,
|
|
|
|
|
[
|
|
|
|
|
spk_item,
|
|
|
|
|
input_audio0,
|
|
|
|
|
vc_transform0,
|
|
|
|
|
f0_file,
|
|
|
|
|
f0method0,
|
|
|
|
|
file_index1,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index2,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy1,
|
|
|
|
|
index_rate1,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius0,
|
2023-05-12 21:43:05 +02:00
|
|
|
|
resample_sr0,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
],
|
|
|
|
|
[vc_output1, vc_output2],
|
|
|
|
|
)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
vc_transform1 = gr.Number(
|
|
|
|
|
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
|
|
|
|
)
|
|
|
|
|
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
|
|
|
|
f0method1 = gr.Radio(
|
|
|
|
|
label=i18n("选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比"),
|
|
|
|
|
choices=["pm", "harvest"],
|
|
|
|
|
value="pm",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
filter_radius1 = gr.Slider(
|
2023-05-12 21:29:30 +02:00
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=7,
|
|
|
|
|
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
|
|
|
|
value=3,
|
|
|
|
|
step=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
with gr.Column():
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index3 = gr.Textbox(
|
|
|
|
|
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
|
|
|
|
value="",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
file_index4 = gr.Dropdown(
|
|
|
|
|
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
|
|
|
|
choices=sorted(index_paths),
|
2023-05-10 21:07:02 +02:00
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
# file_big_npy2 = gr.Textbox(
|
|
|
|
|
# label=i18n("特征文件路径"),
|
|
|
|
|
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
|
|
|
|
# interactive=True,
|
|
|
|
|
# )
|
|
|
|
|
index_rate2 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=1,
|
|
|
|
|
label=i18n("检索特征占比"),
|
|
|
|
|
value=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:43:05 +02:00
|
|
|
|
resample_sr1 = gr.Slider(
|
2023-05-12 21:29:30 +02:00
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=48000,
|
|
|
|
|
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
|
|
|
|
value=0,
|
|
|
|
|
step=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
with gr.Column():
|
|
|
|
|
dir_input = gr.Textbox(
|
|
|
|
|
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
2023-05-12 21:29:30 +02:00
|
|
|
|
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
2023-05-10 21:07:02 +02:00
|
|
|
|
)
|
|
|
|
|
inputs = gr.File(
|
|
|
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
|
|
|
)
|
|
|
|
|
but1 = gr.Button(i18n("转换"), variant="primary")
|
|
|
|
|
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
|
|
|
|
but1.click(
|
|
|
|
|
vc_multi,
|
|
|
|
|
[
|
|
|
|
|
spk_item,
|
|
|
|
|
dir_input,
|
|
|
|
|
opt_input,
|
|
|
|
|
inputs,
|
|
|
|
|
vc_transform1,
|
|
|
|
|
f0method1,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
file_index3,
|
|
|
|
|
file_index4,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# file_big_npy2,
|
|
|
|
|
index_rate2,
|
2023-05-12 21:29:30 +02:00
|
|
|
|
filter_radius1,
|
2023-05-12 21:43:05 +02:00
|
|
|
|
resample_sr1,
|
2023-05-10 21:07:02 +02:00
|
|
|
|
],
|
|
|
|
|
[vc_output3],
|
|
|
|
|
)
|
|
|
|
|
with gr.TabItem(i18n("伴奏人声分离")):
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)"
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
dir_wav_input = gr.Textbox(
|
|
|
|
|
label=i18n("输入待处理音频文件夹路径"),
|
2023-05-12 21:29:30 +02:00
|
|
|
|
value="E:\\codes\\py39\\test-20230416b\\todo-songs\\todo-songs",
|
2023-05-10 21:07:02 +02:00
|
|
|
|
)
|
|
|
|
|
wav_inputs = gr.File(
|
|
|
|
|
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
|
|
|
|
)
|
|
|
|
|
with gr.Column():
|
|
|
|
|
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
|
|
|
|
agg = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=20,
|
|
|
|
|
step=1,
|
|
|
|
|
label="人声提取激进程度",
|
|
|
|
|
value=10,
|
|
|
|
|
interactive=True,
|
|
|
|
|
visible=False, # 先不开放调整
|
|
|
|
|
)
|
|
|
|
|
opt_vocal_root = gr.Textbox(
|
|
|
|
|
label=i18n("指定输出人声文件夹"), value="opt"
|
|
|
|
|
)
|
|
|
|
|
opt_ins_root = gr.Textbox(label=i18n("指定输出乐器文件夹"), value="opt")
|
|
|
|
|
but2 = gr.Button(i18n("转换"), variant="primary")
|
|
|
|
|
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
|
|
|
|
but2.click(
|
|
|
|
|
uvr,
|
|
|
|
|
[
|
|
|
|
|
model_choose,
|
|
|
|
|
dir_wav_input,
|
|
|
|
|
opt_vocal_root,
|
|
|
|
|
wav_inputs,
|
|
|
|
|
opt_ins_root,
|
|
|
|
|
agg,
|
|
|
|
|
],
|
|
|
|
|
[vc_output4],
|
|
|
|
|
)
|
|
|
|
|
with gr.TabItem(i18n("训练")):
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
|
|
|
|
sr2 = gr.Radio(
|
|
|
|
|
label=i18n("目标采样率"),
|
|
|
|
|
choices=["32k", "40k", "48k"],
|
|
|
|
|
value="40k",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
if_f0_3 = gr.Radio(
|
|
|
|
|
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
|
|
|
|
choices=[True, False],
|
|
|
|
|
value=True,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-12 21:29:30 +02:00
|
|
|
|
np7 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=ncpu,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
|
|
|
|
value=ncpu,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
2023-05-10 21:07:02 +02:00
|
|
|
|
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
trainset_dir4 = gr.Textbox(
|
|
|
|
|
label=i18n("输入训练文件夹路径"), value="E:\\语音音频+标注\\米津玄师\\src"
|
|
|
|
|
)
|
|
|
|
|
spk_id5 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=4,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("请指定说话人id"),
|
|
|
|
|
value=0,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
|
|
|
|
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
|
|
|
|
but1.click(
|
2023-05-12 21:43:05 +02:00
|
|
|
|
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
2023-05-10 21:07:02 +02:00
|
|
|
|
)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
with gr.Column():
|
|
|
|
|
gpus6 = gr.Textbox(
|
|
|
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
|
|
|
value=gpus,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
|
|
|
|
with gr.Column():
|
|
|
|
|
f0method8 = gr.Radio(
|
|
|
|
|
label=i18n(
|
|
|
|
|
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
|
|
|
|
),
|
|
|
|
|
choices=["pm", "harvest", "dio"],
|
|
|
|
|
value="harvest",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
|
|
|
|
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
|
|
|
but2.click(
|
|
|
|
|
extract_f0_feature,
|
|
|
|
|
[gpus6, np7, f0method8, if_f0_3, exp_dir1],
|
|
|
|
|
[info2],
|
|
|
|
|
)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
save_epoch10 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=50,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("保存频率save_every_epoch"),
|
|
|
|
|
value=5,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
total_epoch11 = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=1000,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("总训练轮数total_epoch"),
|
|
|
|
|
value=20,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
batch_size12 = gr.Slider(
|
|
|
|
|
minimum=1,
|
|
|
|
|
maximum=40,
|
|
|
|
|
step=1,
|
|
|
|
|
label=i18n("每张显卡的batch_size"),
|
|
|
|
|
value=default_batch_size,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
if_save_latest13 = gr.Radio(
|
|
|
|
|
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
|
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
|
|
value=i18n("否"),
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
if_cache_gpu17 = gr.Radio(
|
|
|
|
|
label=i18n(
|
|
|
|
|
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
|
|
|
|
),
|
|
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
|
|
value=i18n("否"),
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
pretrained_G14 = gr.Textbox(
|
|
|
|
|
label=i18n("加载预训练底模G路径"),
|
|
|
|
|
value="pretrained/f0G40k.pth",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
pretrained_D15 = gr.Textbox(
|
|
|
|
|
label=i18n("加载预训练底模D路径"),
|
|
|
|
|
value="pretrained/f0D40k.pth",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
sr2.change(
|
|
|
|
|
change_sr2, [sr2, if_f0_3], [pretrained_G14, pretrained_D15]
|
|
|
|
|
)
|
|
|
|
|
if_f0_3.change(
|
|
|
|
|
change_f0,
|
|
|
|
|
[if_f0_3, sr2],
|
|
|
|
|
[np7, f0method8, pretrained_G14, pretrained_D15],
|
|
|
|
|
)
|
|
|
|
|
gpus16 = gr.Textbox(
|
|
|
|
|
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
|
|
|
|
value=gpus,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
|
|
|
|
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
|
|
|
|
but5 = gr.Button(i18n("一键训练"), variant="primary")
|
|
|
|
|
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
|
|
|
|
but3.click(
|
|
|
|
|
click_train,
|
|
|
|
|
[
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
if_f0_3,
|
|
|
|
|
spk_id5,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
batch_size12,
|
|
|
|
|
if_save_latest13,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
gpus16,
|
|
|
|
|
if_cache_gpu17,
|
|
|
|
|
],
|
|
|
|
|
info3,
|
|
|
|
|
)
|
|
|
|
|
but4.click(train_index, [exp_dir1], info3)
|
|
|
|
|
but5.click(
|
|
|
|
|
train1key,
|
|
|
|
|
[
|
|
|
|
|
exp_dir1,
|
|
|
|
|
sr2,
|
|
|
|
|
if_f0_3,
|
|
|
|
|
trainset_dir4,
|
|
|
|
|
spk_id5,
|
|
|
|
|
np7,
|
|
|
|
|
f0method8,
|
|
|
|
|
save_epoch10,
|
|
|
|
|
total_epoch11,
|
|
|
|
|
batch_size12,
|
|
|
|
|
if_save_latest13,
|
|
|
|
|
pretrained_G14,
|
|
|
|
|
pretrained_D15,
|
|
|
|
|
gpus16,
|
|
|
|
|
if_cache_gpu17,
|
|
|
|
|
],
|
|
|
|
|
info3,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
with gr.TabItem(i18n("ckpt处理")):
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
ckpt_a = gr.Textbox(label=i18n("A模型路径"), value="", interactive=True)
|
|
|
|
|
ckpt_b = gr.Textbox(label=i18n("B模型路径"), value="", interactive=True)
|
|
|
|
|
alpha_a = gr.Slider(
|
|
|
|
|
minimum=0,
|
|
|
|
|
maximum=1,
|
|
|
|
|
label=i18n("A模型权重"),
|
|
|
|
|
value=0.5,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
sr_ = gr.Radio(
|
|
|
|
|
label=i18n("目标采样率"),
|
|
|
|
|
choices=["32k", "40k", "48k"],
|
|
|
|
|
value="40k",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
if_f0_ = gr.Radio(
|
|
|
|
|
label=i18n("模型是否带音高指导"),
|
|
|
|
|
choices=[i18n("是"), i18n("否")],
|
|
|
|
|
value=i18n("是"),
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
info__ = gr.Textbox(
|
|
|
|
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
|
|
|
|
|
)
|
|
|
|
|
name_to_save0 = gr.Textbox(
|
|
|
|
|
label=i18n("保存的模型名不带后缀"),
|
|
|
|
|
value="",
|
|
|
|
|
max_lines=1,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
but6 = gr.Button(i18n("融合"), variant="primary")
|
|
|
|
|
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
|
|
|
but6.click(
|
|
|
|
|
merge,
|
|
|
|
|
[ckpt_a, ckpt_b, alpha_a, sr_, if_f0_, info__, name_to_save0],
|
|
|
|
|
info4,
|
|
|
|
|
) # def merge(path1,path2,alpha1,sr,f0,info):
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
ckpt_path0 = gr.Textbox(
|
|
|
|
|
label=i18n("模型路径"), value="", interactive=True
|
|
|
|
|
)
|
|
|
|
|
info_ = gr.Textbox(
|
|
|
|
|
label=i18n("要改的模型信息"), value="", max_lines=8, interactive=True
|
|
|
|
|
)
|
|
|
|
|
name_to_save1 = gr.Textbox(
|
|
|
|
|
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
|
|
|
|
value="",
|
|
|
|
|
max_lines=8,
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
but7 = gr.Button(i18n("修改"), variant="primary")
|
|
|
|
|
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
|
|
|
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
|
|
|
|
with gr.Row():
|
|
|
|
|
ckpt_path1 = gr.Textbox(
|
|
|
|
|
label=i18n("模型路径"), value="", interactive=True
|
|
|
|
|
)
|
|
|
|
|
but8 = gr.Button(i18n("查看"), variant="primary")
|
|
|
|
|
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
|
|
|
but8.click(show_info, [ckpt_path1], info6)
|
|
|
|
|
with gr.Group():
|
|
|
|
|
gr.Markdown(
|
|
|
|
|
value=i18n(
|
|
|
|
|
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
ckpt_path2 = gr.Textbox(
|
|
|
|
|
label=i18n("模型路径"),
|
|
|
|
|
value="E:\\codes\\py39\\logs\\mi-test_f0_48k\\G_23333.pth",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
save_name = gr.Textbox(
|
|
|
|
|
label=i18n("保存名"), value="", interactive=True
|
|
|
|
|
)
|
|
|
|
|
sr__ = gr.Radio(
|
|
|
|
|
label=i18n("目标采样率"),
|
|
|
|
|
choices=["32k", "40k", "48k"],
|
|
|
|
|
value="40k",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
if_f0__ = gr.Radio(
|
|
|
|
|
label=i18n("模型是否带音高指导,1是0否"),
|
|
|
|
|
choices=["1", "0"],
|
|
|
|
|
value="1",
|
|
|
|
|
interactive=True,
|
|
|
|
|
)
|
|
|
|
|
info___ = gr.Textbox(
|
|
|
|
|
label=i18n("要置入的模型信息"), value="", max_lines=8, interactive=True
|
|
|
|
|
)
|
|
|
|
|
but9 = gr.Button(i18n("提取"), variant="primary")
|
|
|
|
|
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
|
|
|
|
ckpt_path2.change(change_info_, [ckpt_path2], [sr__, if_f0__])
|
|
|
|
|
but9.click(
|
|
|
|
|
extract_small_model,
|
|
|
|
|
[ckpt_path2, save_name, sr__, if_f0__, info___],
|
|
|
|
|
info7,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
with gr.TabItem(i18n("Onnx导出")):
|
|
|
|
|
with gr.Row():
|
|
|
|
|
ckpt_dir = gr.Textbox(label=i18n("RVC模型路径"), value="", interactive=True)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
onnx_dir = gr.Textbox(
|
|
|
|
|
label=i18n("Onnx输出路径"), value="", interactive=True
|
|
|
|
|
)
|
|
|
|
|
with gr.Row():
|
|
|
|
|
moevs = gr.Checkbox(label=i18n("MoeVS模型"), value=True)
|
|
|
|
|
infoOnnx = gr.Label(label="Null")
|
|
|
|
|
with gr.Row():
|
|
|
|
|
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
|
|
|
|
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir, moevs], infoOnnx)
|
|
|
|
|
|
2023-05-12 21:43:05 +02:00
|
|
|
|
tab_faq = i18n("常见问题解答")
|
2023-05-12 21:29:30 +02:00
|
|
|
|
with gr.TabItem(tab_faq):
|
|
|
|
|
try:
|
2023-05-12 21:43:05 +02:00
|
|
|
|
if tab_faq == "常见问题解答":
|
|
|
|
|
with open("docs/faq.md", "r", encoding="utf8") as f:
|
|
|
|
|
info = f.read()
|
2023-05-12 21:29:30 +02:00
|
|
|
|
else:
|
2023-05-12 21:43:05 +02:00
|
|
|
|
with open("docs/faq_en.md", "r") as f:
|
|
|
|
|
info = f.read()
|
|
|
|
|
gr.Markdown(value=info)
|
2023-05-12 21:29:30 +02:00
|
|
|
|
except:
|
|
|
|
|
gr.Markdown(traceback.format_exc())
|
|
|
|
|
|
2023-05-10 21:07:02 +02:00
|
|
|
|
# with gr.TabItem(i18n("招募音高曲线前端编辑器")):
|
|
|
|
|
# gr.Markdown(value=i18n("加开发群联系我xxxxx"))
|
|
|
|
|
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")):
|
|
|
|
|
# gr.Markdown(value=i18n("xxxxx"))
|
|
|
|
|
|
|
|
|
|
if config.iscolab:
|
|
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
|
|
|
|
else:
|
|
|
|
|
app.queue(concurrency_count=511, max_size=1022).launch(
|
|
|
|
|
server_name="0.0.0.0",
|
|
|
|
|
inbrowser=not config.noautoopen,
|
|
|
|
|
server_port=config.listen_port,
|
|
|
|
|
quiet=True,
|
|
|
|
|
)
|