2023-08-28 09:08:31 +02:00
|
|
|
|
import json
|
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
import numpy as np
|
2023-08-28 09:08:31 +02:00
|
|
|
|
import torch
|
2023-03-31 11:47:00 +02:00
|
|
|
|
from tqdm import tqdm
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
|
|
|
2023-08-19 12:43:02 +02:00
|
|
|
|
def load_data(file_name: str = "./infer/lib/uvr5_pack/name_params.json") -> dict:
|
2023-04-15 13:44:24 +02:00
|
|
|
|
with open(file_name, "r") as f:
|
|
|
|
|
data = json.load(f)
|
|
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
|
|
|
|
|
def make_padding(width, cropsize, offset):
|
|
|
|
|
left = offset
|
|
|
|
|
roi_size = cropsize - left * 2
|
|
|
|
|
if roi_size == 0:
|
|
|
|
|
roi_size = cropsize
|
|
|
|
|
right = roi_size - (width % roi_size) + left
|
|
|
|
|
|
|
|
|
|
return left, right, roi_size
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inference(X_spec, device, model, aggressiveness, data):
|
|
|
|
|
"""
|
2023-03-31 11:47:00 +02:00
|
|
|
|
data : dic configs
|
2023-04-15 13:44:24 +02:00
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def _execute(
|
|
|
|
|
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half=True
|
|
|
|
|
):
|
2023-03-31 11:47:00 +02:00
|
|
|
|
model.eval()
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
preds = []
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
iterations = [n_window]
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
total_iterations = sum(iterations)
|
|
|
|
|
for i in tqdm(range(n_window)):
|
2023-03-31 11:47:00 +02:00
|
|
|
|
start = i * roi_size
|
2023-04-15 13:44:24 +02:00
|
|
|
|
X_mag_window = X_mag_pad[
|
|
|
|
|
None, :, :, start : start + data["window_size"]
|
|
|
|
|
]
|
2023-03-31 11:47:00 +02:00
|
|
|
|
X_mag_window = torch.from_numpy(X_mag_window)
|
2023-04-15 13:44:24 +02:00
|
|
|
|
if is_half:
|
|
|
|
|
X_mag_window = X_mag_window.half()
|
|
|
|
|
X_mag_window = X_mag_window.to(device)
|
2023-03-31 11:47:00 +02:00
|
|
|
|
|
|
|
|
|
pred = model.predict(X_mag_window, aggressiveness)
|
|
|
|
|
|
|
|
|
|
pred = pred.detach().cpu().numpy()
|
|
|
|
|
preds.append(pred[0])
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
pred = np.concatenate(preds, axis=2)
|
|
|
|
|
return pred
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
def preprocess(X_spec):
|
|
|
|
|
X_mag = np.abs(X_spec)
|
|
|
|
|
X_phase = np.angle(X_spec)
|
|
|
|
|
|
|
|
|
|
return X_mag, X_phase
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
|
X_mag, X_phase = preprocess(X_spec)
|
|
|
|
|
|
|
|
|
|
coef = X_mag.max()
|
|
|
|
|
X_mag_pre = X_mag / coef
|
|
|
|
|
|
|
|
|
|
n_frame = X_mag_pre.shape[2]
|
2023-04-15 13:44:24 +02:00
|
|
|
|
pad_l, pad_r, roi_size = make_padding(n_frame, data["window_size"], model.offset)
|
2023-03-31 11:47:00 +02:00
|
|
|
|
n_window = int(np.ceil(n_frame / roi_size))
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
2023-03-31 11:47:00 +02:00
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
if list(model.state_dict().values())[0].dtype == torch.float16:
|
|
|
|
|
is_half = True
|
|
|
|
|
else:
|
|
|
|
|
is_half = False
|
|
|
|
|
pred = _execute(
|
|
|
|
|
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
|
pred = pred[:, :, :n_frame]
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
|
|
if data["tta"]:
|
2023-03-31 11:47:00 +02:00
|
|
|
|
pad_l += roi_size // 2
|
|
|
|
|
pad_r += roi_size // 2
|
|
|
|
|
n_window += 1
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode="constant")
|
2023-03-31 11:47:00 +02:00
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
pred_tta = _execute(
|
|
|
|
|
X_mag_pad, roi_size, n_window, device, model, aggressiveness, is_half
|
|
|
|
|
)
|
|
|
|
|
pred_tta = pred_tta[:, :, roi_size // 2 :]
|
2023-03-31 11:47:00 +02:00
|
|
|
|
pred_tta = pred_tta[:, :, :n_frame]
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.0j * X_phase)
|
2023-03-31 11:47:00 +02:00
|
|
|
|
else:
|
2023-04-15 13:44:24 +02:00
|
|
|
|
return pred * coef, X_mag, np.exp(1.0j * X_phase)
|
2023-03-31 11:47:00 +02:00
|
|
|
|
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
def _get_name_params(model_path, model_hash):
|
|
|
|
|
data = load_data()
|
|
|
|
|
flag = False
|
2023-03-31 11:47:00 +02:00
|
|
|
|
ModelName = model_path
|
2023-04-15 13:44:24 +02:00
|
|
|
|
for type in list(data):
|
|
|
|
|
for model in list(data[type][0]):
|
|
|
|
|
for i in range(len(data[type][0][model])):
|
|
|
|
|
if str(data[type][0][model][i]["hash_name"]) == model_hash:
|
|
|
|
|
flag = True
|
|
|
|
|
elif str(data[type][0][model][i]["hash_name"]) in ModelName:
|
|
|
|
|
flag = True
|
|
|
|
|
|
|
|
|
|
if flag:
|
|
|
|
|
model_params_auto = data[type][0][model][i]["model_params"]
|
|
|
|
|
param_name_auto = data[type][0][model][i]["param_name"]
|
|
|
|
|
if type == "equivalent":
|
|
|
|
|
return param_name_auto, model_params_auto
|
|
|
|
|
else:
|
|
|
|
|
flag = False
|
|
|
|
|
return param_name_auto, model_params_auto
|