2023-03-31 11:47:00 +02:00
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from uvr5_pack.lib_v5 import spec_utils
|
|
|
|
|
|
|
|
|
|
|
|
class Conv2DBNActiv(nn.Module):
|
|
|
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
|
|
|
super(Conv2DBNActiv, self).__init__()
|
|
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin,
|
|
|
|
nout,
|
2023-03-31 11:47:00 +02:00
|
|
|
kernel_size=ksize,
|
|
|
|
stride=stride,
|
|
|
|
padding=pad,
|
|
|
|
dilation=dilation,
|
2023-04-15 13:44:24 +02:00
|
|
|
bias=False,
|
|
|
|
),
|
2023-03-31 11:47:00 +02:00
|
|
|
nn.BatchNorm2d(nout),
|
2023-04-15 13:44:24 +02:00
|
|
|
activ(),
|
2023-03-31 11:47:00 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
|
|
|
|
class SeperableConv2DBNActiv(nn.Module):
|
|
|
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
|
|
|
super(SeperableConv2DBNActiv, self).__init__()
|
|
|
|
self.conv = nn.Sequential(
|
|
|
|
nn.Conv2d(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin,
|
|
|
|
nin,
|
2023-03-31 11:47:00 +02:00
|
|
|
kernel_size=ksize,
|
|
|
|
stride=stride,
|
|
|
|
padding=pad,
|
|
|
|
dilation=dilation,
|
|
|
|
groups=nin,
|
2023-04-15 13:44:24 +02:00
|
|
|
bias=False,
|
|
|
|
),
|
|
|
|
nn.Conv2d(nin, nout, kernel_size=1, bias=False),
|
2023-03-31 11:47:00 +02:00
|
|
|
nn.BatchNorm2d(nout),
|
2023-04-15 13:44:24 +02:00
|
|
|
activ(),
|
2023-03-31 11:47:00 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
|
|
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
|
|
|
super(Encoder, self).__init__()
|
|
|
|
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
|
|
|
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
|
|
|
|
|
|
|
def __call__(self, x):
|
|
|
|
skip = self.conv1(x)
|
|
|
|
h = self.conv2(skip)
|
|
|
|
|
|
|
|
return h, skip
|
|
|
|
|
|
|
|
|
|
|
|
class Decoder(nn.Module):
|
2023-04-15 13:44:24 +02:00
|
|
|
def __init__(
|
|
|
|
self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
|
|
|
|
):
|
2023-03-31 11:47:00 +02:00
|
|
|
super(Decoder, self).__init__()
|
|
|
|
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
|
|
|
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
|
|
|
|
|
|
|
def __call__(self, x, skip=None):
|
2023-04-15 13:44:24 +02:00
|
|
|
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
|
2023-03-31 11:47:00 +02:00
|
|
|
if skip is not None:
|
|
|
|
skip = spec_utils.crop_center(skip, x)
|
|
|
|
x = torch.cat([x, skip], dim=1)
|
|
|
|
h = self.conv(x)
|
|
|
|
|
|
|
|
if self.dropout is not None:
|
|
|
|
h = self.dropout(h)
|
|
|
|
|
|
|
|
return h
|
|
|
|
|
|
|
|
|
|
|
|
class ASPPModule(nn.Module):
|
|
|
|
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
|
|
|
|
super(ASPPModule, self).__init__()
|
|
|
|
self.conv1 = nn.Sequential(
|
|
|
|
nn.AdaptiveAvgPool2d((1, None)),
|
2023-04-15 13:44:24 +02:00
|
|
|
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ),
|
2023-03-31 11:47:00 +02:00
|
|
|
)
|
|
|
|
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
|
|
|
self.conv3 = SeperableConv2DBNActiv(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
self.conv4 = SeperableConv2DBNActiv(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
self.conv5 = SeperableConv2DBNActiv(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
self.conv6 = SeperableConv2DBNActiv(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
self.conv7 = SeperableConv2DBNActiv(
|
2023-04-15 13:44:24 +02:00
|
|
|
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
self.bottleneck = nn.Sequential(
|
2023-04-15 13:44:24 +02:00
|
|
|
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ), nn.Dropout2d(0.1)
|
2023-03-31 11:47:00 +02:00
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
_, _, h, w = x.size()
|
2023-04-15 13:44:24 +02:00
|
|
|
feat1 = F.interpolate(
|
|
|
|
self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
|
|
|
|
)
|
2023-03-31 11:47:00 +02:00
|
|
|
feat2 = self.conv2(x)
|
|
|
|
feat3 = self.conv3(x)
|
|
|
|
feat4 = self.conv4(x)
|
|
|
|
feat5 = self.conv5(x)
|
|
|
|
feat6 = self.conv6(x)
|
|
|
|
feat7 = self.conv7(x)
|
|
|
|
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
|
|
|
bottle = self.bottleneck(out)
|
|
|
|
return bottle
|