1
0
mirror of synced 2024-11-15 11:23:21 +01:00
Retrieval-based-Voice-Conve.../trainset_preprocess_pipeline_print.py

133 lines
4.2 KiB
Python
Raw Normal View History

import sys, os, multiprocessing
2023-04-16 12:56:20 +02:00
from scipy import signal
now_dir = os.getcwd()
2023-03-31 11:49:09 +02:00
sys.path.append(now_dir)
inp_root = sys.argv[1]
sr = int(sys.argv[2])
n_p = int(sys.argv[3])
exp_dir = sys.argv[4]
noparallel = sys.argv[5] == "True"
import numpy as np, os, traceback
2023-03-31 11:49:09 +02:00
from slicer2 import Slicer
import librosa, traceback
from scipy.io import wavfile
2023-03-31 11:49:09 +02:00
import multiprocessing
from my_utils import load_audio
mutex = multiprocessing.Lock()
f = open("%s/preprocess.log" % exp_dir, "a+")
2023-04-13 17:57:27 +02:00
def println(strr):
mutex.acquire()
print(strr)
f.write("%s\n" % strr)
f.flush()
mutex.release()
2023-03-31 11:49:09 +02:00
class PreProcess:
def __init__(self, sr, exp_dir):
2023-03-31 11:49:09 +02:00
self.slicer = Slicer(
sr=sr,
threshold=-40,
2023-03-31 11:49:09 +02:00
min_length=800,
min_interval=400,
hop_size=15,
max_sil_kept=150,
2023-03-31 11:49:09 +02:00
)
self.sr = sr
self.bh, self.ah = signal.butter(N=5, Wn=48, btype="high", fs=self.sr)
self.per = 3.7
self.overlap = 0.3
self.tail = self.per + self.overlap
self.max = 0.95
self.alpha = 0.8
self.exp_dir = exp_dir
self.gt_wavs_dir = "%s/0_gt_wavs" % exp_dir
self.wavs16k_dir = "%s/1_16k_wavs" % exp_dir
os.makedirs(self.exp_dir, exist_ok=True)
os.makedirs(self.gt_wavs_dir, exist_ok=True)
os.makedirs(self.wavs16k_dir, exist_ok=True)
2023-03-31 11:49:09 +02:00
def norm_write(self, tmp_audio, idx0, idx1):
tmp_audio = (tmp_audio / np.abs(tmp_audio).max() * (self.max * self.alpha)) + (
1 - self.alpha
) * tmp_audio
wavfile.write(
"%s/%s_%s.wav" % (self.gt_wavs_dir, idx0, idx1),
self.sr,
2023-04-22 15:41:50 +02:00
tmp_audio.astype(np.float32),
)
2023-04-22 15:41:50 +02:00
tmp_audio = librosa.resample(tmp_audio, orig_sr=self.sr, target_sr=16000)#, res_type="soxr_vhq"
wavfile.write(
"%s/%s_%s.wav" % (self.wavs16k_dir, idx0, idx1),
16000,
2023-04-22 15:41:50 +02:00
tmp_audio.astype(np.float32),
)
2023-03-31 11:49:09 +02:00
def pipeline(self, path, idx0):
2023-03-31 11:49:09 +02:00
try:
audio = load_audio(path, self.sr)
# zero phased digital filter cause pre-ringing noise...
# audio = signal.filtfilt(self.bh, self.ah, audio)
audio = signal.lfilter(self.bh, self.ah, audio)
idx1 = 0
2023-03-31 11:49:09 +02:00
for audio in self.slicer.slice(audio):
i = 0
while 1:
2023-03-31 11:49:09 +02:00
start = int(self.sr * (self.per - self.overlap) * i)
i += 1
if len(audio[start:]) > self.tail * self.sr:
tmp_audio = audio[start : start + int(self.per * self.sr)]
self.norm_write(tmp_audio, idx0, idx1)
2023-03-31 11:49:09 +02:00
idx1 += 1
else:
tmp_audio = audio[start:]
break
self.norm_write(tmp_audio, idx0, idx1)
println("%s->Suc." % path)
2023-03-31 11:49:09 +02:00
except:
println("%s->%s" % (path, traceback.format_exc()))
2023-03-31 11:49:09 +02:00
def pipeline_mp(self, infos):
2023-03-31 11:49:09 +02:00
for path, idx0 in infos:
self.pipeline(path, idx0)
2023-03-31 11:49:09 +02:00
def pipeline_mp_inp_dir(self, inp_root, n_p):
2023-03-31 11:49:09 +02:00
try:
infos = [
("%s/%s" % (inp_root, name), idx)
for idx, name in enumerate(sorted(list(os.listdir(inp_root))))
]
if noparallel:
for i in range(n_p):
self.pipeline_mp(infos[i::n_p])
else:
ps = []
for i in range(n_p):
p = multiprocessing.Process(
target=self.pipeline_mp, args=(infos[i::n_p],)
)
p.start()
ps.append(p)
for p in ps:
p.join()
2023-03-31 11:49:09 +02:00
except:
println("Fail. %s" % traceback.format_exc())
2023-03-31 11:49:09 +02:00
def preprocess_trainset(inp_root, sr, n_p, exp_dir):
pp = PreProcess(sr, exp_dir)
2023-04-13 17:57:27 +02:00
println("start preprocess")
println(sys.argv)
pp.pipeline_mp_inp_dir(inp_root, n_p)
2023-04-13 17:57:27 +02:00
println("end preprocess")
if __name__ == "__main__":
preprocess_trainset(inp_root, sr, n_p, exp_dir)