1
0
mirror of synced 2024-11-15 03:07:40 +01:00
Retrieval-based-Voice-Conve.../config.py

118 lines
3.9 KiB
Python
Raw Normal View History

2023-05-02 14:07:03 +02:00
import argparse
import torch
from multiprocessing import cpu_count
class Config:
def __init__(self):
self.device = "cuda:0"
self.is_half = True
self.n_cpu = 0
self.gpu_name = None
self.gpu_mem = None
(
self.python_cmd,
self.listen_port,
self.iscolab,
self.noparallel,
self.noautoopen,
) = self.arg_parse()
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
2023-05-05 18:13:27 +02:00
@staticmethod
def arg_parse() -> tuple:
2023-05-02 14:07:03 +02:00
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument(
"--pycmd", type=str, default="python", help="Python command"
)
parser.add_argument("--colab", action="store_true", help="Launch in colab")
parser.add_argument(
"--noparallel", action="store_true", help="Disable parallel processing"
)
parser.add_argument(
"--noautoopen",
action="store_true",
help="Do not open in browser automatically",
)
cmd_opts = parser.parse_args()
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
return (
cmd_opts.pycmd,
cmd_opts.port,
cmd_opts.colab,
cmd_opts.noparallel,
cmd_opts.noautoopen,
)
def device_config(self) -> tuple:
if torch.cuda.is_available():
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
2023-05-02 14:31:05 +02:00
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
2023-05-02 14:07:03 +02:00
or "P40" in self.gpu_name.upper()
2023-05-04 16:22:46 +02:00
or "1060" in self.gpu_name
2023-05-02 14:07:03 +02:00
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
2023-05-04 16:22:46 +02:00
print("16系/10系显卡和P40强制单精度")
2023-05-02 14:07:03 +02:00
self.is_half = False
for config_file in ["32k.json", "40k.json", "48k.json"]:
with open(f"configs/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/{config_file}", "w") as f:
f.write(strr)
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
else:
self.gpu_name = None
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
2023-05-02 14:07:03 +02:00
if self.gpu_mem <= 4:
with open("trainset_preprocess_pipeline_print.py", "r") as f:
strr = f.read().replace("3.7", "3.0")
with open("trainset_preprocess_pipeline_print.py", "w") as f:
f.write(strr)
elif torch.backends.mps.is_available():
print("没有发现支持的N卡, 使用MPS进行推理")
self.device = "mps"
2023-05-10 15:17:13 +02:00
self.is_half = False
2023-05-02 14:07:03 +02:00
else:
print("没有发现支持的N卡, 使用CPU进行推理")
self.device = "cpu"
2023-05-10 15:19:09 +02:00
self.is_half = False
2023-05-02 14:07:03 +02:00
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem != None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
return x_pad, x_query, x_center, x_max