343 lines
11 KiB
Python
343 lines
11 KiB
Python
|
import math
|
||
|
import random
|
||
|
from typing import Optional, Tuple
|
||
|
from fairseq.checkpoint_utils import load_model_ensemble_and_task
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
# from fairseq.data.data_utils import compute_mask_indices
|
||
|
from fairseq.utils import index_put
|
||
|
|
||
|
|
||
|
# @torch.jit.script
|
||
|
def pad_to_multiple(x, multiple, dim=-1, value=0):
|
||
|
# Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41
|
||
|
if x is None:
|
||
|
return None, 0
|
||
|
tsz = x.size(dim)
|
||
|
m = tsz / multiple
|
||
|
remainder = math.ceil(m) * multiple - tsz
|
||
|
if int(tsz % multiple) == 0:
|
||
|
return x, 0
|
||
|
pad_offset = (0,) * (-1 - dim) * 2
|
||
|
|
||
|
return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder
|
||
|
|
||
|
|
||
|
def extract_features(
|
||
|
self,
|
||
|
x,
|
||
|
padding_mask=None,
|
||
|
tgt_layer=None,
|
||
|
min_layer=0,
|
||
|
):
|
||
|
if padding_mask is not None:
|
||
|
x = index_put(x, padding_mask, 0)
|
||
|
|
||
|
x_conv = self.pos_conv(x.transpose(1, 2))
|
||
|
x_conv = x_conv.transpose(1, 2)
|
||
|
x = x + x_conv
|
||
|
|
||
|
if not self.layer_norm_first:
|
||
|
x = self.layer_norm(x)
|
||
|
|
||
|
# pad to the sequence length dimension
|
||
|
x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0)
|
||
|
if pad_length > 0 and padding_mask is None:
|
||
|
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
||
|
padding_mask[:, -pad_length:] = True
|
||
|
else:
|
||
|
padding_mask, _ = pad_to_multiple(
|
||
|
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
||
|
)
|
||
|
x = F.dropout(x, p=self.dropout, training=self.training)
|
||
|
|
||
|
# B x T x C -> T x B x C
|
||
|
x = x.transpose(0, 1)
|
||
|
|
||
|
layer_results = []
|
||
|
r = None
|
||
|
for i, layer in enumerate(self.layers):
|
||
|
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
||
|
if not self.training or (dropout_probability > self.layerdrop):
|
||
|
x, (z, lr) = layer(
|
||
|
x, self_attn_padding_mask=padding_mask, need_weights=False
|
||
|
)
|
||
|
if i >= min_layer:
|
||
|
layer_results.append((x, z, lr))
|
||
|
if i == tgt_layer:
|
||
|
r = x
|
||
|
break
|
||
|
|
||
|
if r is not None:
|
||
|
x = r
|
||
|
|
||
|
# T x B x C -> B x T x C
|
||
|
x = x.transpose(0, 1)
|
||
|
|
||
|
# undo paddding
|
||
|
if pad_length > 0:
|
||
|
x = x[:, :-pad_length]
|
||
|
|
||
|
def undo_pad(a, b, c):
|
||
|
return (
|
||
|
a[:-pad_length],
|
||
|
b[:-pad_length] if b is not None else b,
|
||
|
c[:-pad_length],
|
||
|
)
|
||
|
|
||
|
layer_results = [undo_pad(*u) for u in layer_results]
|
||
|
|
||
|
return x, layer_results
|
||
|
|
||
|
|
||
|
def compute_mask_indices(
|
||
|
shape: Tuple[int, int],
|
||
|
padding_mask: Optional[torch.Tensor],
|
||
|
mask_prob: float,
|
||
|
mask_length: int,
|
||
|
mask_type: str = "static",
|
||
|
mask_other: float = 0.0,
|
||
|
min_masks: int = 0,
|
||
|
no_overlap: bool = False,
|
||
|
min_space: int = 0,
|
||
|
require_same_masks: bool = True,
|
||
|
mask_dropout: float = 0.0,
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes random mask spans for a given shape
|
||
|
|
||
|
Args:
|
||
|
shape: the the shape for which to compute masks.
|
||
|
should be of size 2 where first element is batch size and 2nd is timesteps
|
||
|
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
|
||
|
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
|
||
|
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
|
||
|
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
|
||
|
mask_type: how to compute mask lengths
|
||
|
static = fixed size
|
||
|
uniform = sample from uniform distribution [mask_other, mask_length*2]
|
||
|
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
|
||
|
poisson = sample from possion distribution with lambda = mask length
|
||
|
min_masks: minimum number of masked spans
|
||
|
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
|
||
|
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
|
||
|
require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample
|
||
|
mask_dropout: randomly dropout this percentage of masks in each example
|
||
|
"""
|
||
|
|
||
|
bsz, all_sz = shape
|
||
|
mask = torch.full((bsz, all_sz), False)
|
||
|
|
||
|
all_num_mask = int(
|
||
|
# add a random number for probabilistic rounding
|
||
|
mask_prob * all_sz / float(mask_length)
|
||
|
+ torch.rand([1]).item()
|
||
|
)
|
||
|
|
||
|
all_num_mask = max(min_masks, all_num_mask)
|
||
|
|
||
|
mask_idcs = []
|
||
|
for i in range(bsz):
|
||
|
if padding_mask is not None:
|
||
|
sz = all_sz - padding_mask[i].long().sum().item()
|
||
|
num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand())
|
||
|
num_mask = max(min_masks, num_mask)
|
||
|
else:
|
||
|
sz = all_sz
|
||
|
num_mask = all_num_mask
|
||
|
|
||
|
if mask_type == "static":
|
||
|
lengths = torch.full([num_mask], mask_length)
|
||
|
elif mask_type == "uniform":
|
||
|
lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask])
|
||
|
elif mask_type == "normal":
|
||
|
lengths = torch.normal(mask_length, mask_other, size=[num_mask])
|
||
|
lengths = [max(1, int(round(x))) for x in lengths]
|
||
|
else:
|
||
|
raise Exception("unknown mask selection " + mask_type)
|
||
|
|
||
|
if sum(lengths) == 0:
|
||
|
lengths[0] = min(mask_length, sz - 1)
|
||
|
|
||
|
if no_overlap:
|
||
|
mask_idc = []
|
||
|
|
||
|
def arrange(s, e, length, keep_length):
|
||
|
span_start = torch.randint(low=s, high=e - length, size=[1]).item()
|
||
|
mask_idc.extend(span_start + i for i in range(length))
|
||
|
|
||
|
new_parts = []
|
||
|
if span_start - s - min_space >= keep_length:
|
||
|
new_parts.append((s, span_start - min_space + 1))
|
||
|
if e - span_start - length - min_space > keep_length:
|
||
|
new_parts.append((span_start + length + min_space, e))
|
||
|
return new_parts
|
||
|
|
||
|
parts = [(0, sz)]
|
||
|
min_length = min(lengths)
|
||
|
for length in sorted(lengths, reverse=True):
|
||
|
t = [e - s if e - s >= length + min_space else 0 for s, e in parts]
|
||
|
lens = torch.asarray(t, dtype=torch.int)
|
||
|
l_sum = torch.sum(lens)
|
||
|
if l_sum == 0:
|
||
|
break
|
||
|
probs = lens / torch.sum(lens)
|
||
|
c = torch.multinomial(probs.float(), len(parts)).item()
|
||
|
s, e = parts.pop(c)
|
||
|
parts.extend(arrange(s, e, length, min_length))
|
||
|
mask_idc = torch.asarray(mask_idc)
|
||
|
else:
|
||
|
min_len = min(lengths)
|
||
|
if sz - min_len <= num_mask:
|
||
|
min_len = sz - num_mask - 1
|
||
|
mask_idc = torch.asarray(
|
||
|
random.sample([i for i in range(sz - min_len)], num_mask)
|
||
|
)
|
||
|
mask_idc = torch.asarray(
|
||
|
[
|
||
|
mask_idc[j] + offset
|
||
|
for j in range(len(mask_idc))
|
||
|
for offset in range(lengths[j])
|
||
|
]
|
||
|
)
|
||
|
|
||
|
mask_idcs.append(torch.unique(mask_idc[mask_idc < sz]))
|
||
|
|
||
|
min_len = min([len(m) for m in mask_idcs])
|
||
|
for i, mask_idc in enumerate(mask_idcs):
|
||
|
if isinstance(mask_idc, torch.Tensor):
|
||
|
mask_idc = torch.asarray(mask_idc, dtype=torch.float)
|
||
|
if len(mask_idc) > min_len and require_same_masks:
|
||
|
mask_idc = torch.asarray(
|
||
|
random.sample([i for i in range(mask_idc)], min_len)
|
||
|
)
|
||
|
if mask_dropout > 0:
|
||
|
num_holes = int(round(len(mask_idc) * mask_dropout))
|
||
|
mask_idc = torch.asarray(
|
||
|
random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes)
|
||
|
)
|
||
|
|
||
|
mask[i, mask_idc.int()] = True
|
||
|
|
||
|
return mask
|
||
|
|
||
|
|
||
|
def apply_mask(self, x, padding_mask, target_list):
|
||
|
B, T, C = x.shape
|
||
|
torch.zeros_like(x)
|
||
|
if self.mask_prob > 0:
|
||
|
mask_indices = compute_mask_indices(
|
||
|
(B, T),
|
||
|
padding_mask,
|
||
|
self.mask_prob,
|
||
|
self.mask_length,
|
||
|
self.mask_selection,
|
||
|
self.mask_other,
|
||
|
min_masks=2,
|
||
|
no_overlap=self.no_mask_overlap,
|
||
|
min_space=self.mask_min_space,
|
||
|
)
|
||
|
mask_indices = mask_indices.to(x.device)
|
||
|
x[mask_indices] = self.mask_emb
|
||
|
else:
|
||
|
mask_indices = None
|
||
|
|
||
|
if self.mask_channel_prob > 0:
|
||
|
mask_channel_indices = compute_mask_indices(
|
||
|
(B, C),
|
||
|
None,
|
||
|
self.mask_channel_prob,
|
||
|
self.mask_channel_length,
|
||
|
self.mask_channel_selection,
|
||
|
self.mask_channel_other,
|
||
|
no_overlap=self.no_mask_channel_overlap,
|
||
|
min_space=self.mask_channel_min_space,
|
||
|
)
|
||
|
mask_channel_indices = (
|
||
|
mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1)
|
||
|
)
|
||
|
x[mask_channel_indices] = 0
|
||
|
|
||
|
return x, mask_indices
|
||
|
|
||
|
|
||
|
def get_hubert_model(
|
||
|
model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu")
|
||
|
):
|
||
|
models, _, _ = load_model_ensemble_and_task(
|
||
|
[model_path],
|
||
|
suffix="",
|
||
|
)
|
||
|
hubert_model = models[0]
|
||
|
hubert_model = hubert_model.to(device)
|
||
|
|
||
|
def _apply_mask(x, padding_mask, target_list):
|
||
|
return apply_mask(hubert_model, x, padding_mask, target_list)
|
||
|
|
||
|
hubert_model.apply_mask = _apply_mask
|
||
|
|
||
|
def _extract_features(
|
||
|
x,
|
||
|
padding_mask=None,
|
||
|
tgt_layer=None,
|
||
|
min_layer=0,
|
||
|
):
|
||
|
return extract_features(
|
||
|
hubert_model.encoder,
|
||
|
x,
|
||
|
padding_mask=padding_mask,
|
||
|
tgt_layer=tgt_layer,
|
||
|
min_layer=min_layer,
|
||
|
)
|
||
|
|
||
|
hubert_model.encoder.extract_features = _extract_features
|
||
|
|
||
|
hubert_model._forward = hubert_model.forward
|
||
|
|
||
|
def hubert_extract_features(
|
||
|
self,
|
||
|
source: torch.Tensor,
|
||
|
padding_mask: Optional[torch.Tensor] = None,
|
||
|
mask: bool = False,
|
||
|
ret_conv: bool = False,
|
||
|
output_layer: Optional[int] = None,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
res = self._forward(
|
||
|
source,
|
||
|
padding_mask=padding_mask,
|
||
|
mask=mask,
|
||
|
features_only=True,
|
||
|
output_layer=output_layer,
|
||
|
)
|
||
|
feature = res["features"] if ret_conv else res["x"]
|
||
|
return feature, res["padding_mask"]
|
||
|
|
||
|
def _hubert_extract_features(
|
||
|
source: torch.Tensor,
|
||
|
padding_mask: Optional[torch.Tensor] = None,
|
||
|
mask: bool = False,
|
||
|
ret_conv: bool = False,
|
||
|
output_layer: Optional[int] = None,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
return hubert_extract_features(
|
||
|
hubert_model, source, padding_mask, mask, ret_conv, output_layer
|
||
|
)
|
||
|
|
||
|
hubert_model.extract_features = _hubert_extract_features
|
||
|
|
||
|
def infer(source, padding_mask, output_layer: torch.Tensor):
|
||
|
output_layer = output_layer.item()
|
||
|
logits = hubert_model.extract_features(
|
||
|
source=source, padding_mask=padding_mask, output_layer=output_layer
|
||
|
)
|
||
|
feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0]
|
||
|
return feats
|
||
|
|
||
|
hubert_model.infer = infer
|
||
|
# hubert_model.forward=infer
|
||
|
# hubert_model.forward
|
||
|
|
||
|
return hubert_model
|