2023-04-15 13:44:24 +02:00
|
|
|
"""
|
2023-03-31 11:49:09 +02:00
|
|
|
|
|
|
|
对源特征进行检索
|
2023-04-15 13:44:24 +02:00
|
|
|
"""
|
2023-08-28 09:08:31 +02:00
|
|
|
import os
|
|
|
|
import pdb
|
|
|
|
|
|
|
|
import parselmouth
|
|
|
|
import torch
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
2023-08-28 09:08:31 +02:00
|
|
|
# import torchcrepe
|
|
|
|
from time import time as ttime
|
|
|
|
|
|
|
|
# import pyworld
|
|
|
|
import librosa
|
2023-03-31 11:49:09 +02:00
|
|
|
import numpy as np
|
2023-08-28 09:08:31 +02:00
|
|
|
import scipy.signal as signal
|
2023-03-31 11:49:09 +02:00
|
|
|
import soundfile as sf
|
2023-08-28 09:08:31 +02:00
|
|
|
import torch.nn.functional as F
|
|
|
|
from fairseq import checkpoint_utils
|
2023-04-15 13:44:24 +02:00
|
|
|
|
2023-03-31 11:49:09 +02:00
|
|
|
# from models import SynthesizerTrn256#hifigan_nonsf
|
2023-06-24 09:26:14 +02:00
|
|
|
# from lib.infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf
|
|
|
|
from lib.infer_pack.models import (
|
2023-04-15 13:44:24 +02:00
|
|
|
SynthesizerTrnMs256NSFsid as SynthesizerTrn256,
|
|
|
|
) # hifigan_nsf
|
2023-08-28 09:08:31 +02:00
|
|
|
from scipy.io import wavfile
|
2023-04-15 13:44:24 +02:00
|
|
|
|
2023-06-24 09:26:14 +02:00
|
|
|
# from lib.infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf
|
2023-03-31 11:49:09 +02:00
|
|
|
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf
|
|
|
|
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
2023-04-15 13:44:24 +02:00
|
|
|
model_path = r"E:\codes\py39\vits_vc_gpu_train\hubert_base.pt" #
|
2023-03-31 11:49:09 +02:00
|
|
|
print("load model(s) from {}".format(model_path))
|
|
|
|
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
|
|
|
[model_path],
|
|
|
|
suffix="",
|
|
|
|
)
|
|
|
|
model = models[0]
|
|
|
|
model = model.to(device)
|
|
|
|
model = model.half()
|
|
|
|
model.eval()
|
|
|
|
|
|
|
|
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256
|
|
|
|
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],109,256,is_half=True)#hifigan#512#256
|
2023-04-15 13:44:24 +02:00
|
|
|
net_g = SynthesizerTrn256(
|
|
|
|
1025,
|
|
|
|
32,
|
|
|
|
192,
|
|
|
|
192,
|
|
|
|
768,
|
|
|
|
2,
|
|
|
|
6,
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
"1",
|
|
|
|
[3, 7, 11],
|
|
|
|
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
|
|
|
[10, 10, 2, 2],
|
|
|
|
512,
|
|
|
|
[16, 16, 4, 4],
|
|
|
|
183,
|
|
|
|
256,
|
|
|
|
is_half=True,
|
|
|
|
) # hifigan#512#256#no_dropout
|
2023-03-31 11:49:09 +02:00
|
|
|
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,3,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],0)#ts3
|
|
|
|
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2],512,[16,16,4],0)#hifigan-ps-sr
|
|
|
|
#
|
|
|
|
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [5,5], 512, [15,15], 0)#ms
|
|
|
|
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,10], 512, [16,16], 0)#idwt2
|
|
|
|
|
|
|
|
# weights=torch.load("infer/ft-mi_1k-noD.pt")
|
|
|
|
# weights=torch.load("infer/ft-mi-freeze-vocoder-flow-enc_q_1k.pt")
|
|
|
|
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
|
|
|
|
# weights=torch.load("infer/ft-mi-sim1k.pt")
|
2023-04-15 13:44:24 +02:00
|
|
|
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
|
|
|
|
print(net_g.load_state_dict(weights, strict=True))
|
2023-03-31 11:49:09 +02:00
|
|
|
|
|
|
|
net_g.eval().to(device)
|
|
|
|
net_g.half()
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
def get_f0(x, p_len, f0_up_key=0):
|
2023-03-31 11:49:09 +02:00
|
|
|
time_step = 160 / 16000 * 1000
|
|
|
|
f0_min = 50
|
|
|
|
f0_max = 1100
|
|
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
f0 = (
|
|
|
|
parselmouth.Sound(x, 16000)
|
|
|
|
.to_pitch_ac(
|
|
|
|
time_step=time_step / 1000,
|
|
|
|
voicing_threshold=0.6,
|
|
|
|
pitch_floor=f0_min,
|
|
|
|
pitch_ceiling=f0_max,
|
|
|
|
)
|
|
|
|
.selected_array["frequency"]
|
|
|
|
)
|
|
|
|
|
|
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
|
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
2023-03-31 11:49:09 +02:00
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
|
|
f0bak = f0.copy()
|
|
|
|
|
|
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
2023-04-15 13:44:24 +02:00
|
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
|
|
f0_mel_max - f0_mel_min
|
|
|
|
) + 1
|
2023-03-31 11:49:09 +02:00
|
|
|
f0_mel[f0_mel <= 1] = 1
|
|
|
|
f0_mel[f0_mel > 255] = 255
|
|
|
|
# f0_mel[f0_mel > 188] = 188
|
2023-08-10 04:28:30 +02:00
|
|
|
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
2023-03-31 11:49:09 +02:00
|
|
|
return f0_coarse, f0bak
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
2023-03-31 11:49:09 +02:00
|
|
|
import faiss
|
2023-04-15 13:44:24 +02:00
|
|
|
|
|
|
|
index = faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index")
|
|
|
|
big_npy = np.load("infer/big_src_feature_mi.npy")
|
|
|
|
ta0 = ta1 = ta2 = 0
|
|
|
|
for idx, name in enumerate(
|
|
|
|
[
|
|
|
|
"冬之花clip1.wav",
|
|
|
|
]
|
|
|
|
): ##
|
|
|
|
wav_path = "todo-songs/%s" % name #
|
|
|
|
f0_up_key = -2 #
|
2023-03-31 11:49:09 +02:00
|
|
|
audio, sampling_rate = sf.read(wav_path)
|
|
|
|
if len(audio.shape) > 1:
|
|
|
|
audio = librosa.to_mono(audio.transpose(1, 0))
|
|
|
|
if sampling_rate != 16000:
|
|
|
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
|
|
|
|
|
|
|
feats = torch.from_numpy(audio).float()
|
|
|
|
if feats.dim() == 2: # double channels
|
|
|
|
feats = feats.mean(-1)
|
|
|
|
assert feats.dim() == 1, feats.dim()
|
|
|
|
feats = feats.view(1, -1)
|
|
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
|
|
|
inputs = {
|
|
|
|
"source": feats.half().to(device),
|
|
|
|
"padding_mask": padding_mask.to(device),
|
|
|
|
"output_layer": 9, # layer 9
|
|
|
|
}
|
2023-04-15 13:44:24 +02:00
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
t0 = ttime()
|
2023-03-31 11:49:09 +02:00
|
|
|
with torch.no_grad():
|
|
|
|
logits = model.extract_features(**inputs)
|
|
|
|
feats = model.final_proj(logits[0])
|
|
|
|
|
|
|
|
####索引优化
|
|
|
|
npy = feats[0].cpu().numpy().astype("float32")
|
|
|
|
D, I = index.search(npy, 1)
|
2023-04-15 13:44:24 +02:00
|
|
|
feats = (
|
|
|
|
torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
|
|
|
|
)
|
|
|
|
|
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
t1 = ttime()
|
2023-03-31 11:49:09 +02:00
|
|
|
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
|
2023-04-15 13:44:24 +02:00
|
|
|
p_len = min(feats.shape[1], 10000) #
|
|
|
|
pitch, pitchf = get_f0(audio, p_len, f0_up_key)
|
|
|
|
p_len = min(feats.shape[1], 10000, pitch.shape[0]) # 太大了爆显存
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
t2 = ttime()
|
|
|
|
feats = feats[:, :p_len, :]
|
2023-03-31 11:49:09 +02:00
|
|
|
pitch = pitch[:p_len]
|
|
|
|
pitchf = pitchf[:p_len]
|
|
|
|
p_len = torch.LongTensor([p_len]).to(device)
|
|
|
|
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
|
2023-04-15 13:44:24 +02:00
|
|
|
sid = torch.LongTensor([0]).to(device)
|
2023-03-31 11:49:09 +02:00
|
|
|
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
2023-04-15 13:44:24 +02:00
|
|
|
audio = (
|
|
|
|
net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
|
|
|
|
.data.cpu()
|
|
|
|
.float()
|
|
|
|
.numpy()
|
|
|
|
) # nsf
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
t3 = ttime()
|
|
|
|
ta0 += t1 - t0
|
|
|
|
ta1 += t2 - t1
|
|
|
|
ta2 += t3 - t2
|
2023-03-31 11:49:09 +02:00
|
|
|
# wavfile.write("ft-mi_1k-index256-noD-%s.wav"%name, 40000, audio)##
|
|
|
|
# wavfile.write("ft-mi-freeze-vocoder-flow-enc_q_1k-%s.wav"%name, 40000, audio)##
|
|
|
|
# wavfile.write("ft-mi-sim1k-%s.wav"%name, 40000, audio)##
|
2023-04-15 13:44:24 +02:00
|
|
|
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
|
2023-03-31 11:49:09 +02:00
|
|
|
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
print(ta0, ta1, ta2) #
|