164 lines
4.7 KiB
Python
164 lines
4.7 KiB
Python
|
from io import BytesIO
|
||
|
import pickle
|
||
|
import time
|
||
|
import torch
|
||
|
from tqdm import tqdm
|
||
|
from collections import OrderedDict
|
||
|
|
||
|
|
||
|
def load_inputs(path, device, is_half=False):
|
||
|
parm = torch.load(path, map_location=torch.device("cpu"))
|
||
|
for key in parm.keys():
|
||
|
parm[key] = parm[key].to(device)
|
||
|
if is_half and parm[key].dtype == torch.float32:
|
||
|
parm[key] = parm[key].half()
|
||
|
elif not is_half and parm[key].dtype == torch.float16:
|
||
|
parm[key] = parm[key].float()
|
||
|
return parm
|
||
|
|
||
|
|
||
|
def benchmark(
|
||
|
model, inputs_path, device=torch.device("cpu"), epoch=1000, is_half=False
|
||
|
):
|
||
|
parm = load_inputs(inputs_path, device, is_half)
|
||
|
total_ts = 0.0
|
||
|
bar = tqdm(range(epoch))
|
||
|
for i in bar:
|
||
|
start_time = time.perf_counter()
|
||
|
o = model(**parm)
|
||
|
total_ts += time.perf_counter() - start_time
|
||
|
print(f"num_epoch: {epoch} | avg time(ms): {(total_ts*1000)/epoch}")
|
||
|
|
||
|
|
||
|
def jit_warm_up(model, inputs_path, device=torch.device("cpu"), epoch=5, is_half=False):
|
||
|
benchmark(model, inputs_path, device, epoch=epoch, is_half=is_half)
|
||
|
|
||
|
|
||
|
def to_jit_model(
|
||
|
model_path,
|
||
|
model_type: str,
|
||
|
mode: str = "trace",
|
||
|
inputs_path: str = None,
|
||
|
device=torch.device("cpu"),
|
||
|
is_half=False,
|
||
|
):
|
||
|
model = None
|
||
|
if model_type.lower() == "synthesizer":
|
||
|
from .get_synthesizer import get_synthesizer
|
||
|
|
||
|
model, _ = get_synthesizer(model_path, device)
|
||
|
model.forward = model.infer
|
||
|
elif model_type.lower() == "rmvpe":
|
||
|
from .get_rmvpe import get_rmvpe
|
||
|
|
||
|
model = get_rmvpe(model_path, device)
|
||
|
elif model_type.lower() == "hubert":
|
||
|
from .get_hubert import get_hubert_model
|
||
|
|
||
|
model = get_hubert_model(model_path, device)
|
||
|
model.forward = model.infer
|
||
|
else:
|
||
|
raise ValueError(f"No model type named {model_type}")
|
||
|
model = model.eval()
|
||
|
model = model.half() if is_half else model.float()
|
||
|
if mode == "trace":
|
||
|
assert not inputs_path
|
||
|
inputs = load_inputs(inputs_path, device, is_half)
|
||
|
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
|
||
|
elif mode == "script":
|
||
|
model_jit = torch.jit.script(model)
|
||
|
model_jit.to(device)
|
||
|
model_jit = model_jit.half() if is_half else model_jit.float()
|
||
|
# model = model.half() if is_half else model.float()
|
||
|
return (model, model_jit)
|
||
|
|
||
|
|
||
|
def export(
|
||
|
model: torch.nn.Module,
|
||
|
mode: str = "trace",
|
||
|
inputs: dict = None,
|
||
|
device=torch.device("cpu"),
|
||
|
is_half: bool = False,
|
||
|
) -> dict:
|
||
|
model = model.half() if is_half else model.float()
|
||
|
model.eval()
|
||
|
if mode == "trace":
|
||
|
assert inputs is not None
|
||
|
model_jit = torch.jit.trace(model, example_kwarg_inputs=inputs)
|
||
|
elif mode == "script":
|
||
|
model_jit = torch.jit.script(model)
|
||
|
model_jit.to(device)
|
||
|
model_jit = model_jit.half() if is_half else model_jit.float()
|
||
|
buffer = BytesIO()
|
||
|
# model_jit=model_jit.cpu()
|
||
|
torch.jit.save(model_jit, buffer)
|
||
|
del model_jit
|
||
|
cpt = OrderedDict()
|
||
|
cpt["model"] = buffer.getvalue()
|
||
|
cpt["is_half"] = is_half
|
||
|
return cpt
|
||
|
|
||
|
|
||
|
def load(path: str):
|
||
|
with open(path, "rb") as f:
|
||
|
return pickle.load(f)
|
||
|
|
||
|
|
||
|
def save(ckpt: dict, save_path: str):
|
||
|
with open(save_path, "wb") as f:
|
||
|
pickle.dump(ckpt, f)
|
||
|
|
||
|
|
||
|
def rmvpe_jit_export(
|
||
|
model_path: str,
|
||
|
mode: str = "script",
|
||
|
inputs_path: str = None,
|
||
|
save_path: str = None,
|
||
|
device=torch.device("cpu"),
|
||
|
is_half=False,
|
||
|
):
|
||
|
if not save_path:
|
||
|
save_path = model_path.rstrip(".pth")
|
||
|
save_path += ".half.jit" if is_half else ".jit"
|
||
|
if "cuda" in str(device) and ":" not in str(device):
|
||
|
device = torch.device("cuda:0")
|
||
|
from .get_rmvpe import get_rmvpe
|
||
|
|
||
|
model = get_rmvpe(model_path, device)
|
||
|
inputs = None
|
||
|
if mode == "trace":
|
||
|
inputs = load_inputs(inputs_path, device, is_half)
|
||
|
ckpt = export(model, mode, inputs, device, is_half)
|
||
|
ckpt["device"] = str(device)
|
||
|
save(ckpt, save_path)
|
||
|
return ckpt
|
||
|
|
||
|
|
||
|
def synthesizer_jit_export(
|
||
|
model_path: str,
|
||
|
mode: str = "script",
|
||
|
inputs_path: str = None,
|
||
|
save_path: str = None,
|
||
|
device=torch.device("cpu"),
|
||
|
is_half=False,
|
||
|
):
|
||
|
if not save_path:
|
||
|
save_path = model_path.rstrip(".pth")
|
||
|
save_path += ".half.jit" if is_half else ".jit"
|
||
|
if "cuda" in str(device) and ":" not in str(device):
|
||
|
device = torch.device("cuda:0")
|
||
|
from .get_synthesizer import get_synthesizer
|
||
|
|
||
|
model, cpt = get_synthesizer(model_path, device)
|
||
|
assert isinstance(cpt, dict)
|
||
|
model.forward = model.infer
|
||
|
inputs = None
|
||
|
if mode == "trace":
|
||
|
inputs = load_inputs(inputs_path, device, is_half)
|
||
|
ckpt = export(model, mode, inputs, device, is_half)
|
||
|
cpt.pop("weight")
|
||
|
cpt["model"] = ckpt["model"]
|
||
|
cpt["device"] = device
|
||
|
save(cpt, save_path)
|
||
|
return cpt
|