2023-03-31 11:49:09 +02:00
|
|
|
import numpy as np,parselmouth,torch,pdb
|
|
|
|
from time import time as ttime
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from config import x_pad,x_query,x_center,x_max
|
|
|
|
import scipy.signal as signal
|
|
|
|
import pyworld,os,traceback,faiss
|
|
|
|
class VC(object):
|
|
|
|
def __init__(self,tgt_sr,device,is_half):
|
|
|
|
self.sr=16000#hubert输入采样率
|
|
|
|
self.window=160#每帧点数
|
|
|
|
self.t_pad=self.sr*x_pad#每条前后pad时间
|
|
|
|
self.t_pad_tgt=tgt_sr*x_pad
|
|
|
|
self.t_pad2=self.t_pad*2
|
|
|
|
self.t_query=self.sr*x_query#查询切点前后查询时间
|
|
|
|
self.t_center=self.sr*x_center#查询切点位置
|
|
|
|
self.t_max=self.sr*x_max#免查询时长阈值
|
|
|
|
self.device=device
|
|
|
|
self.is_half=is_half
|
|
|
|
|
|
|
|
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
|
|
|
|
time_step = self.window / self.sr * 1000
|
|
|
|
f0_min = 50
|
|
|
|
f0_max = 1100
|
|
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
|
|
if(f0_method=="pm"):
|
|
|
|
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
|
|
|
time_step=time_step / 1000, voicing_threshold=0.6,
|
|
|
|
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
|
|
|
pad_size=(p_len - len(f0) + 1) // 2
|
|
|
|
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
|
|
|
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
|
|
|
elif(f0_method=="harvest"):
|
|
|
|
f0, t = pyworld.harvest(
|
|
|
|
x.astype(np.double),
|
|
|
|
fs=self.sr,
|
|
|
|
f0_ceil=f0_max,
|
2023-04-13 17:57:27 +02:00
|
|
|
f0_floor=f0_min,
|
2023-03-31 11:49:09 +02:00
|
|
|
frame_period=10,
|
|
|
|
)
|
|
|
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
|
|
|
f0 = signal.medfilt(f0, 3)
|
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
|
|
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
|
|
|
tf0=self.sr//self.window#每秒f0点数
|
|
|
|
if (inp_f0 is not None):
|
|
|
|
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
|
|
|
|
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
|
|
|
|
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
|
|
|
|
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
|
|
|
|
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
|
|
|
f0bak = f0.copy()
|
|
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
|
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
|
|
|
f0_mel[f0_mel <= 1] = 1
|
|
|
|
f0_mel[f0_mel > 255] = 255
|
|
|
|
f0_coarse = np.rint(f0_mel).astype(np.int)
|
|
|
|
return f0_coarse, f0bak#1-0
|
|
|
|
|
|
|
|
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
|
|
|
|
feats = torch.from_numpy(audio0)
|
2023-04-11 12:14:55 +02:00
|
|
|
if(self.is_half):feats=feats.half()
|
2023-03-31 11:49:09 +02:00
|
|
|
else:feats=feats.float()
|
|
|
|
if feats.dim() == 2: # double channels
|
|
|
|
feats = feats.mean(-1)
|
|
|
|
assert feats.dim() == 1, feats.dim()
|
|
|
|
feats = feats.view(1, -1)
|
|
|
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
|
|
|
|
|
|
|
inputs = {
|
|
|
|
"source": feats.to(self.device),
|
|
|
|
"padding_mask": padding_mask,
|
|
|
|
"output_layer": 9, # layer 9
|
|
|
|
}
|
|
|
|
t0 = ttime()
|
|
|
|
with torch.no_grad():
|
|
|
|
logits = model.extract_features(**inputs)
|
|
|
|
feats = model.final_proj(logits[0])
|
|
|
|
|
|
|
|
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
|
|
|
|
npy = feats[0].cpu().numpy()
|
2023-04-11 12:14:55 +02:00
|
|
|
if(self.is_half):npy=npy.astype("float32")
|
2023-04-10 12:28:39 +02:00
|
|
|
_, I = index.search(npy, 1)
|
2023-03-31 11:49:09 +02:00
|
|
|
npy=big_npy[I.squeeze()]
|
2023-04-11 12:14:55 +02:00
|
|
|
if(self.is_half):npy=npy.astype("float16")
|
2023-03-31 11:49:09 +02:00
|
|
|
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
|
|
|
|
|
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
|
|
t1 = ttime()
|
|
|
|
p_len = audio0.shape[0]//self.window
|
|
|
|
if(feats.shape[1]<p_len):
|
|
|
|
p_len=feats.shape[1]
|
|
|
|
if(pitch!=None and pitchf!=None):
|
|
|
|
pitch=pitch[:,:p_len]
|
|
|
|
pitchf=pitchf[:,:p_len]
|
|
|
|
p_len=torch.tensor([p_len],device=self.device).long()
|
|
|
|
with torch.no_grad():
|
|
|
|
if(pitch!=None and pitchf!=None):
|
|
|
|
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
|
|
|
else:
|
|
|
|
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
|
|
|
del feats,p_len,padding_mask
|
2023-04-10 12:28:39 +02:00
|
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
2023-03-31 11:49:09 +02:00
|
|
|
t2 = ttime()
|
|
|
|
times[0] += (t1 - t0)
|
|
|
|
times[2] += (t2 - t1)
|
|
|
|
return audio1
|
|
|
|
|
|
|
|
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
|
|
|
|
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
|
|
|
|
try:
|
|
|
|
index = faiss.read_index(file_index)
|
|
|
|
big_npy = np.load(file_big_npy)
|
|
|
|
except:
|
|
|
|
traceback.print_exc()
|
|
|
|
index=big_npy=None
|
|
|
|
else:
|
|
|
|
index=big_npy=None
|
|
|
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
|
|
|
|
opt_ts = []
|
|
|
|
if(audio_pad.shape[0]>self.t_max):
|
|
|
|
audio_sum = np.zeros_like(audio)
|
|
|
|
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
|
|
|
|
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
|
|
|
|
s = 0
|
|
|
|
audio_opt=[]
|
|
|
|
t=None
|
|
|
|
t1=ttime()
|
|
|
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
|
|
|
|
p_len=audio_pad.shape[0]//self.window
|
|
|
|
inp_f0=None
|
|
|
|
if(hasattr(f0_file,'name') ==True):
|
|
|
|
try:
|
|
|
|
with open(f0_file.name,"r")as f:
|
|
|
|
lines=f.read().strip("\n").split("\n")
|
|
|
|
inp_f0=[]
|
|
|
|
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
|
|
|
|
inp_f0=np.array(inp_f0,dtype="float32")
|
|
|
|
except:
|
|
|
|
traceback.print_exc()
|
|
|
|
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
|
|
|
|
pitch, pitchf=None,None
|
|
|
|
if(if_f0==1):
|
|
|
|
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
|
|
|
|
pitch = pitch[:p_len]
|
|
|
|
pitchf = pitchf[:p_len]
|
|
|
|
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
|
|
|
|
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
|
|
|
|
t2=ttime()
|
|
|
|
times[1] += (t2 - t1)
|
|
|
|
for t in opt_ts:
|
|
|
|
t=t//self.window*self.window
|
|
|
|
if (if_f0 == 1):
|
|
|
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
|
|
|
else:
|
|
|
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
|
|
|
s = t
|
|
|
|
if (if_f0 == 1):
|
|
|
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
|
|
|
else:
|
|
|
|
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
|
|
|
audio_opt=np.concatenate(audio_opt)
|
|
|
|
del pitch,pitchf,sid
|
2023-04-10 12:28:39 +02:00
|
|
|
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
2023-03-31 11:49:09 +02:00
|
|
|
return audio_opt
|