1
0
mirror of synced 2024-11-15 19:33:23 +01:00
Retrieval-based-Voice-Conve.../train/utils.py

386 lines
14 KiB
Python
Raw Normal View History

2023-03-31 11:47:00 +02:00
import os,traceback
import glob
import sys
import argparse
import logging
import json
import subprocess
import numpy as np
from scipy.io.wavfile import read
import torch
MATPLOTLIB_FLAG = False
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging
def load_checkpoint_d(checkpoint_path, combd,sbd, optimizer=None,load_opt=1):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
##################
def go(model,bkey):
saved_state_dict = checkpoint_dict[bkey]
if hasattr(model, 'module'):state_dict = model.module.state_dict()
else:state_dict = model.state_dict()
new_state_dict= {}
for k, v in state_dict.items():#模型需要的shape
try:
new_state_dict[k] = saved_state_dict[k]
if(saved_state_dict[k].shape!=state_dict[k].shape):
print("shape-%s-mismatch|need-%s|get-%s"%(k,state_dict[k].shape,saved_state_dict[k].shape))#
raise KeyError
except:
# logger.info(traceback.format_exc())
logger.info("%s is not in the checkpoint" % k)#pretrain缺失的
new_state_dict[k] = v#模型自带的随机值
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict,strict=False)
else:
model.load_state_dict(new_state_dict,strict=False)
go(combd,"combd")
go(sbd,"sbd")
#############
logger.info("Loaded model weights")
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None and load_opt==1:###加载不了如果是空的的话重新初始化可能还会影响lr时间表的更新因此在train文件最外围catch
# try:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
# except:
# traceback.print_exc()
logger.info("Loaded checkpoint '{}' (iteration {})" .format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
# def load_checkpoint(checkpoint_path, model, optimizer=None):
# assert os.path.isfile(checkpoint_path)
# checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
# iteration = checkpoint_dict['iteration']
# learning_rate = checkpoint_dict['learning_rate']
# if optimizer is not None:
# optimizer.load_state_dict(checkpoint_dict['optimizer'])
# # print(1111)
# saved_state_dict = checkpoint_dict['model']
# # print(1111)
#
# if hasattr(model, 'module'):
# state_dict = model.module.state_dict()
# else:
# state_dict = model.state_dict()
# new_state_dict= {}
# for k, v in state_dict.items():
# try:
# new_state_dict[k] = saved_state_dict[k]
# except:
# logger.info("%s is not in the checkpoint" % k)
# new_state_dict[k] = v
# if hasattr(model, 'module'):
# model.module.load_state_dict(new_state_dict)
# else:
# model.load_state_dict(new_state_dict)
# logger.info("Loaded checkpoint '{}' (iteration {})" .format(
# checkpoint_path, iteration))
# return model, optimizer, learning_rate, iteration
def load_checkpoint(checkpoint_path, model, optimizer=None,load_opt=1):
assert os.path.isfile(checkpoint_path)
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
saved_state_dict = checkpoint_dict['model']
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
new_state_dict= {}
for k, v in state_dict.items():#模型需要的shape
try:
new_state_dict[k] = saved_state_dict[k]
if(saved_state_dict[k].shape!=state_dict[k].shape):
print("shape-%s-mismatch|need-%s|get-%s"%(k,state_dict[k].shape,saved_state_dict[k].shape))#
raise KeyError
except:
# logger.info(traceback.format_exc())
logger.info("%s is not in the checkpoint" % k)#pretrain缺失的
new_state_dict[k] = v#模型自带的随机值
if hasattr(model, 'module'):
model.module.load_state_dict(new_state_dict,strict=False)
else:
model.load_state_dict(new_state_dict,strict=False)
logger.info("Loaded model weights")
iteration = checkpoint_dict['iteration']
learning_rate = checkpoint_dict['learning_rate']
if optimizer is not None and load_opt==1:###加载不了如果是空的的话重新初始化可能还会影响lr时间表的更新因此在train文件最外围catch
# try:
optimizer.load_state_dict(checkpoint_dict['optimizer'])
# except:
# traceback.print_exc()
logger.info("Loaded checkpoint '{}' (iteration {})" .format(checkpoint_path, iteration))
return model, optimizer, learning_rate, iteration
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(model, 'module'):
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save({'model': state_dict,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
def save_checkpoint_d(combd, sbd, optimizer, learning_rate, iteration, checkpoint_path):
logger.info("Saving model and optimizer state at iteration {} to {}".format(
iteration, checkpoint_path))
if hasattr(combd, 'module'): state_dict_combd = combd.module.state_dict()
else:state_dict_combd = combd.state_dict()
if hasattr(sbd, 'module'): state_dict_sbd = sbd.module.state_dict()
else:state_dict_sbd = sbd.state_dict()
torch.save({
'combd': state_dict_combd,
'sbd': state_dict_sbd,
'iteration': iteration,
'optimizer': optimizer.state_dict(),
'learning_rate': learning_rate}, checkpoint_path)
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
for k, v in scalars.items():
writer.add_scalar(k, v, global_step)
for k, v in histograms.items():
writer.add_histogram(k, v, global_step)
for k, v in images.items():
writer.add_image(k, v, global_step, dataformats='HWC')
for k, v in audios.items():
writer.add_audio(k, v, global_step, audio_sampling_rate)
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
return x
def plot_spectrogram_to_numpy(spectrogram):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(10,2))
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
interpolation='none')
plt.colorbar(im, ax=ax)
plt.xlabel("Frames")
plt.ylabel("Channels")
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def plot_alignment_to_numpy(alignment, info=None):
global MATPLOTLIB_FLAG
if not MATPLOTLIB_FLAG:
import matplotlib
matplotlib.use("Agg")
MATPLOTLIB_FLAG = True
mpl_logger = logging.getLogger('matplotlib')
mpl_logger.setLevel(logging.WARNING)
import matplotlib.pylab as plt
import numpy as np
fig, ax = plt.subplots(figsize=(6, 4))
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
interpolation='none')
fig.colorbar(im, ax=ax)
xlabel = 'Decoder timestep'
if info is not None:
xlabel += '\n\n' + info
plt.xlabel(xlabel)
plt.ylabel('Encoder timestep')
plt.tight_layout()
fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close()
return data
def load_wav_to_torch(full_path):
sampling_rate, data = read(full_path)
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
def load_filepaths_and_text(filename, split="|"):
with open(filename, encoding='utf-8') as f:
filepaths_and_text = [line.strip().split(split) for line in f]
return filepaths_and_text
def get_hparams(init=True):
'''
todo:
结尾七人组
保存频率总epoch done
bs done
pretrainGpretrainD done
卡号os.en["CUDA_VISIBLE_DEVICES"] done
if_latest todo
模型if_f0 todo
采样率自动选择config done
是否缓存数据集进GPU:if_cache_data_in_gpu done
-m:
自动决定training_files路径,改掉train_nsf_load_pretrain.py里的hps.data.training_files done
-c不要了
'''
parser = argparse.ArgumentParser()
# parser.add_argument('-c', '--config', type=str, default="configs/40k.json",help='JSON file for configuration')
parser.add_argument('-se', '--save_every_epoch', type=int, required=True,help='checkpoint save frequency (epoch)')
parser.add_argument('-te', '--total_epoch', type=int, required=True,help='total_epoch')
parser.add_argument('-pg', '--pretrainG', type=str, default="",help='Pretrained Discriminator path')
parser.add_argument('-pd', '--pretrainD', type=str, default="",help='Pretrained Generator path')
parser.add_argument('-g', '--gpus', type=str, default="0",help='split by -')
parser.add_argument('-bs', '--batch_size', type=int, required=True,help='batch size')
parser.add_argument('-e', '--experiment_dir', type=str, required=True,help='experiment dir')#-m
parser.add_argument('-sr', '--sample_rate', type=str, required=True,help='sample rate, 32k/40k/48k')
parser.add_argument('-f0', '--if_f0', type=int, required=True,help='use f0 as one of the inputs of the model, 1 or 0')
parser.add_argument('-l', '--if_latest', type=int, required=True,help='if only save the latest G/D pth file, 1 or 0')
parser.add_argument('-c', '--if_cache_data_in_gpu', type=int, required=True,help='if caching the dataset in GPU memory, 1 or 0')
args = parser.parse_args()
name = args.experiment_dir
experiment_dir = os.path.join("./logs", args.experiment_dir)
if not os.path.exists(experiment_dir):
os.makedirs(experiment_dir)
config_path = "configs/%s.json"%args.sample_rate
config_save_path = os.path.join(experiment_dir, "config.json")
if init:
with open(config_path, "r") as f:
data = f.read()
with open(config_save_path, "w") as f:
f.write(data)
else:
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams = HParams(**config)
hparams.model_dir = hparams.experiment_dir = experiment_dir
hparams.save_every_epoch = args.save_every_epoch
hparams.name = name
hparams.total_epoch = args.total_epoch
hparams.pretrainG = args.pretrainG
hparams.pretrainD = args.pretrainD
hparams.gpus = args.gpus
hparams.train.batch_size = args.batch_size
hparams.sample_rate = args.sample_rate
hparams.if_f0 = args.if_f0
hparams.if_latest = args.if_latest
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu
hparams.data.training_files = "%s/filelist.txt"%experiment_dir
return hparams
def get_hparams_from_dir(model_dir):
config_save_path = os.path.join(model_dir, "config.json")
with open(config_save_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams =HParams(**config)
hparams.model_dir = model_dir
return hparams
def get_hparams_from_file(config_path):
with open(config_path, "r") as f:
data = f.read()
config = json.loads(data)
hparams =HParams(**config)
return hparams
def check_git_hash(model_dir):
source_dir = os.path.dirname(os.path.realpath(__file__))
if not os.path.exists(os.path.join(source_dir, ".git")):
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
source_dir
))
return
cur_hash = subprocess.getoutput("git rev-parse HEAD")
path = os.path.join(model_dir, "githash")
if os.path.exists(path):
saved_hash = open(path).read()
if saved_hash != cur_hash:
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
saved_hash[:8], cur_hash[:8]))
else:
open(path, "w").write(cur_hash)
def get_logger(model_dir, filename="train.log"):
global logger
logger = logging.getLogger(os.path.basename(model_dir))
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
if not os.path.exists(model_dir):
os.makedirs(model_dir)
h = logging.FileHandler(os.path.join(model_dir, filename))
h.setLevel(logging.DEBUG)
h.setFormatter(formatter)
logger.addHandler(h)
return logger
class HParams():
def __init__(self, **kwargs):
for k, v in kwargs.items():
if type(v) == dict:
v = HParams(**v)
self[k] = v
def keys(self):
return self.__dict__.keys()
def items(self):
return self.__dict__.items()
def values(self):
return self.__dict__.values()
def __len__(self):
return len(self.__dict__)
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, value):
return setattr(self, key, value)
def __contains__(self, key):
return key in self.__dict__
def __repr__(self):
return self.__dict__.__repr__()