1
0
mirror of synced 2024-12-18 18:35:54 +01:00
Retrieval-based-Voice-Conve.../infer/modules/ipex/hijacks.py

358 lines
12 KiB
Python
Raw Normal View History

import contextlib
import importlib
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return
class CondFunc: # pylint: disable=missing-class-docstring
def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split(".")
for i in range(len(func_path) - 1, -1, -1):
try:
resolved_obj = importlib.import_module(".".join(func_path[:i]))
break
except ImportError:
pass
for attr_name in func_path[i:-1]:
resolved_obj = getattr(resolved_obj, attr_name)
orig_func = getattr(resolved_obj, func_path[-1])
setattr(
resolved_obj,
func_path[-1],
lambda *args, **kwargs: self(*args, **kwargs),
)
self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)
_utils = torch.utils.data._utils
def _shutdown_workers(self):
if (
torch.utils.data._utils is None
or torch.utils.data._utils.python_exit_status is True
or torch.utils.data._utils.python_exit_status is None
):
return
if hasattr(self, "_shutdown") and not self._shutdown:
self._shutdown = True
try:
if hasattr(self, "_pin_memory_thread"):
self._pin_memory_thread_done_event.set()
self._worker_result_queue.put((None, None))
self._pin_memory_thread.join()
self._worker_result_queue.cancel_join_thread()
self._worker_result_queue.close()
self._workers_done_event.set()
for worker_id in range(len(self._workers)):
if self._persistent_workers or self._workers_status[worker_id]:
self._mark_worker_as_unavailable(worker_id, shutdown=True)
for w in self._workers: # pylint: disable=invalid-name
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL)
for q in self._index_queues: # pylint: disable=invalid-name
q.cancel_join_thread()
q.close()
finally:
if self._worker_pids_set:
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self))
self._worker_pids_set = False
for w in self._workers: # pylint: disable=invalid-name
if w.is_alive():
w.terminate()
class DummyDataParallel(
torch.nn.Module
): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods
def __new__(
cls, module, device_ids=None, output_device=None, dim=0
): # pylint: disable=unused-argument
if isinstance(device_ids, list) and len(device_ids) > 1:
print("IPEX backend doesn't support DataParallel on multiple XPU devices")
return module.to("xpu")
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument
return contextlib.nullcontext()
def check_device(device):
return bool(
(isinstance(device, torch.device) and device.type == "cuda")
or (isinstance(device, str) and "cuda" in device)
or isinstance(device, int)
)
def return_xpu(device):
return (
f"xpu:{device[-1]}"
if isinstance(device, str) and ":" in device
else f"xpu:{device}"
if isinstance(device, int)
else torch.device("xpu")
if isinstance(device, torch.device)
else "xpu"
)
def ipex_no_cuda(orig_func, *args, **kwargs):
torch.cuda.is_available = lambda: False
orig_func(*args, **kwargs)
torch.cuda.is_available = torch.xpu.is_available
original_autocast = torch.autocast
def ipex_autocast(*args, **kwargs):
if len(args) > 0 and args[0] == "cuda":
return original_autocast("xpu", *args[1:], **kwargs)
else:
return original_autocast(*args, **kwargs)
original_torch_cat = torch.cat
def torch_cat(tensor, *args, **kwargs):
if len(tensor) == 3 and (
tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype
):
return original_torch_cat(
[tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)],
*args,
**kwargs,
)
else:
return original_torch_cat(tensor, *args, **kwargs)
original_interpolate = torch.nn.functional.interpolate
def interpolate(
tensor,
size=None,
scale_factor=None,
mode="nearest",
align_corners=None,
recompute_scale_factor=None,
antialias=False,
): # pylint: disable=too-many-arguments
if antialias or align_corners is not None:
return_device = tensor.device
return_dtype = tensor.dtype
return original_interpolate(
tensor.to("cpu", dtype=torch.float32),
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor,
antialias=antialias,
).to(return_device, dtype=return_dtype)
else:
return original_interpolate(
tensor,
size=size,
scale_factor=scale_factor,
mode=mode,
align_corners=align_corners,
recompute_scale_factor=recompute_scale_factor,
antialias=antialias,
)
original_linalg_solve = torch.linalg.solve
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name
if A.device != torch.device("cpu") or B.device != torch.device("cpu"):
return_device = A.device
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(
return_device
)
else:
return original_linalg_solve(A, B, *args, **kwargs)
def ipex_hijacks():
CondFunc(
"torch.Tensor.to",
lambda orig_func, self, device=None, *args, **kwargs: orig_func(
self, return_xpu(device), *args, **kwargs
),
lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
)
CondFunc(
"torch.Tensor.cuda",
lambda orig_func, self, device=None, *args, **kwargs: orig_func(
self, return_xpu(device), *args, **kwargs
),
lambda orig_func, self, device=None, *args, **kwargs: check_device(device),
)
CondFunc(
"torch.empty",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.load",
lambda orig_func, *args, map_location=None, **kwargs: orig_func(
*args, return_xpu(map_location), **kwargs
),
lambda orig_func, *args, map_location=None, **kwargs: map_location is None
or check_device(map_location),
)
CondFunc(
"torch.randn",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.ones",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.zeros",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.tensor",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.linspace",
lambda orig_func, *args, device=None, **kwargs: orig_func(
*args, device=return_xpu(device), **kwargs
),
lambda orig_func, *args, device=None, **kwargs: check_device(device),
)
CondFunc(
"torch.Generator",
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None
and device != torch.device("cpu")
and device != "cpu",
)
CondFunc(
"torch.batch_norm",
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
input,
weight
if weight is not None
else torch.ones(input.size()[1], device=input.device),
bias
if bias is not None
else torch.zeros(input.size()[1], device=input.device),
*args,
**kwargs,
),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
)
CondFunc(
"torch.instance_norm",
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(
input,
weight
if weight is not None
else torch.ones(input.size()[1], device=input.device),
bias
if bias is not None
else torch.zeros(input.size()[1], device=input.device),
*args,
**kwargs,
),
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"),
)
# Functions with dtype errors:
CondFunc(
"torch.nn.modules.GroupNorm.forward",
lambda orig_func, self, input: orig_func(
self, input.to(self.weight.data.dtype)
),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
)
CondFunc(
"torch.nn.modules.linear.Linear.forward",
lambda orig_func, self, input: orig_func(
self, input.to(self.weight.data.dtype)
),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
)
CondFunc(
"torch.nn.modules.conv.Conv2d.forward",
lambda orig_func, self, input: orig_func(
self, input.to(self.weight.data.dtype)
),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype,
)
CondFunc(
"torch.nn.functional.layer_norm",
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(
input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs
),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight
is not None
and input.dtype != weight.data.dtype,
)
# Diffusers Float64 (ARC GPUs doesn't support double or Float64):
if not torch.xpu.has_fp64_dtype():
CondFunc(
"torch.from_numpy",
lambda orig_func, ndarray: orig_func(ndarray.astype("float32")),
lambda orig_func, ndarray: ndarray.dtype == float,
)
# Broken functions when torch.cuda.is_available is True:
CondFunc(
"torch.utils.data.dataloader._BaseDataLoaderIter.__init__",
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs),
lambda orig_func, *args, **kwargs: True,
)
# Functions that make compile mad with CondFunc:
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = (
_shutdown_workers
)
torch.nn.DataParallel = DummyDataParallel
torch.autocast = ipex_autocast
torch.cat = torch_cat
torch.linalg.solve = linalg_solve
torch.nn.functional.interpolate = interpolate
torch.backends.cuda.sdp_kernel = return_null_context