236 lines
7.0 KiB
Python
236 lines
7.0 KiB
Python
|
import os,sys,pdb,torch
|
||
|
now_dir = os.getcwd()
|
||
|
sys.path.append(now_dir)
|
||
|
import argparse
|
||
|
import glob
|
||
|
import sys
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from multiprocessing import cpu_count
|
||
|
|
||
|
####
|
||
|
#USAGE
|
||
|
#
|
||
|
#In your Terminal or CMD or whatever
|
||
|
#python infer_cli.py [TRANSPOSE_VALUE] "[INPUT_PATH]" "[OUTPUT_PATH]" "[MODEL_PATH]" "[INDEX_FILE_PATH]" "[INFERENCE_DEVICE]" "[METHOD]"
|
||
|
|
||
|
using_cli = False
|
||
|
device = "cuda:0"
|
||
|
is_half = False
|
||
|
|
||
|
if(len(sys.argv) > 0):
|
||
|
f0_up_key=int(sys.argv[1]) #transpose value
|
||
|
input_path=sys.argv[2]
|
||
|
output_path=sys.argv[3]
|
||
|
model_path=sys.argv[4]
|
||
|
file_index=sys.argv[5] #.index file
|
||
|
device=sys.argv[6]
|
||
|
f0_method=sys.argv[7] #pm or harvest or crepe
|
||
|
|
||
|
using_cli = True
|
||
|
|
||
|
#file_index2=sys.argv[8]
|
||
|
#index_rate=float(sys.argv[10]) #search feature ratio
|
||
|
#filter_radius=float(sys.argv[11]) #median filter
|
||
|
#resample_sr=float(sys.argv[12]) #resample audio in post processing
|
||
|
#rms_mix_rate=float(sys.argv[13]) #search feature
|
||
|
print(sys.argv)
|
||
|
|
||
|
class Config:
|
||
|
def __init__(self,device,is_half):
|
||
|
self.device = device
|
||
|
self.is_half = is_half
|
||
|
self.n_cpu = 0
|
||
|
self.gpu_name = None
|
||
|
self.gpu_mem = None
|
||
|
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
||
|
|
||
|
def device_config(self) -> tuple:
|
||
|
if torch.cuda.is_available() and device != "cpu":
|
||
|
i_device = int(self.device.split(":")[-1])
|
||
|
self.gpu_name = torch.cuda.get_device_name(i_device)
|
||
|
if (
|
||
|
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
||
|
or "P40" in self.gpu_name.upper()
|
||
|
or "1060" in self.gpu_name
|
||
|
or "1070" in self.gpu_name
|
||
|
or "1080" in self.gpu_name
|
||
|
):
|
||
|
print("16系/10系显卡和P40强制单精度")
|
||
|
self.is_half = False
|
||
|
for config_file in ["32k.json", "40k.json", "48k.json"]:
|
||
|
with open(f"configs/{config_file}", "r") as f:
|
||
|
strr = f.read().replace("true", "false")
|
||
|
with open(f"configs/{config_file}", "w") as f:
|
||
|
f.write(strr)
|
||
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
||
|
strr = f.read().replace("3.7", "3.0")
|
||
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
||
|
f.write(strr)
|
||
|
else:
|
||
|
self.gpu_name = None
|
||
|
self.gpu_mem = int(
|
||
|
torch.cuda.get_device_properties(i_device).total_memory
|
||
|
/ 1024
|
||
|
/ 1024
|
||
|
/ 1024
|
||
|
+ 0.4
|
||
|
)
|
||
|
if self.gpu_mem <= 4:
|
||
|
with open("trainset_preprocess_pipeline_print.py", "r") as f:
|
||
|
strr = f.read().replace("3.7", "3.0")
|
||
|
with open("trainset_preprocess_pipeline_print.py", "w") as f:
|
||
|
f.write(strr)
|
||
|
elif torch.backends.mps.is_available():
|
||
|
print("没有发现支持的N卡, 使用MPS进行推理")
|
||
|
self.device = "mps"
|
||
|
else:
|
||
|
print("没有发现支持的N卡, 使用CPU进行推理")
|
||
|
self.device = "cpu"
|
||
|
self.is_half = False
|
||
|
|
||
|
if self.n_cpu == 0:
|
||
|
self.n_cpu = cpu_count()
|
||
|
|
||
|
if self.is_half:
|
||
|
# 6G显存配置
|
||
|
x_pad = 3
|
||
|
x_query = 10
|
||
|
x_center = 60
|
||
|
x_max = 65
|
||
|
else:
|
||
|
# 5G显存配置
|
||
|
x_pad = 1
|
||
|
x_query = 6
|
||
|
x_center = 38
|
||
|
x_max = 41
|
||
|
|
||
|
if self.gpu_mem != None and self.gpu_mem <= 4:
|
||
|
x_pad = 1
|
||
|
x_query = 5
|
||
|
x_center = 30
|
||
|
x_max = 32
|
||
|
|
||
|
return x_pad, x_query, x_center, x_max
|
||
|
|
||
|
config=Config(device,is_half)
|
||
|
now_dir=os.getcwd()
|
||
|
sys.path.append(now_dir)
|
||
|
from vc_infer_pipeline import VC
|
||
|
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||
|
from my_utils import load_audio
|
||
|
from fairseq import checkpoint_utils
|
||
|
from scipy.io import wavfile
|
||
|
|
||
|
hubert_model=None
|
||
|
def load_hubert():
|
||
|
global hubert_model
|
||
|
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
||
|
["hubert_base.pt"],
|
||
|
suffix="",
|
||
|
)
|
||
|
hubert_model = models[0]
|
||
|
hubert_model = hubert_model.to(config.device)
|
||
|
if config.is_half:
|
||
|
hubert_model = hubert_model.half()
|
||
|
else:
|
||
|
hubert_model = hubert_model.float()
|
||
|
hubert_model.eval()
|
||
|
|
||
|
def vc_single(
|
||
|
sid=0,
|
||
|
input_audio_path=None,
|
||
|
f0_up_key=0,
|
||
|
f0_file=None,
|
||
|
f0_method="pm",
|
||
|
file_index="", #.index file
|
||
|
file_index2="",
|
||
|
# file_big_npy,
|
||
|
index_rate=1.0,
|
||
|
filter_radius=3,
|
||
|
resample_sr=0,
|
||
|
rms_mix_rate=1.0,
|
||
|
model_path="",
|
||
|
output_path="",
|
||
|
protect=0.33
|
||
|
):
|
||
|
global tgt_sr, net_g, vc, hubert_model, version
|
||
|
get_vc(model_path)
|
||
|
if input_audio_path is None:
|
||
|
return "You need to upload an audio file", None
|
||
|
|
||
|
f0_up_key = int(f0_up_key)
|
||
|
audio = load_audio(input_audio_path, 16000)
|
||
|
audio_max = np.abs(audio).max() / 0.95
|
||
|
|
||
|
if audio_max > 1:
|
||
|
audio /= audio_max
|
||
|
times = [0, 0, 0]
|
||
|
|
||
|
if hubert_model == None:
|
||
|
load_hubert()
|
||
|
|
||
|
if_f0 = cpt.get("f0", 1)
|
||
|
|
||
|
file_index = (
|
||
|
(
|
||
|
file_index.strip(" ")
|
||
|
.strip('"')
|
||
|
.strip("\n")
|
||
|
.strip('"')
|
||
|
.strip(" ")
|
||
|
.replace("trained", "added")
|
||
|
)
|
||
|
if file_index != ""
|
||
|
else file_index2
|
||
|
)
|
||
|
|
||
|
audio_opt = vc.pipeline(
|
||
|
hubert_model,
|
||
|
net_g,
|
||
|
sid,
|
||
|
audio,
|
||
|
input_audio_path,
|
||
|
times,
|
||
|
f0_up_key,
|
||
|
f0_method,
|
||
|
file_index,
|
||
|
# file_big_npy,
|
||
|
index_rate,
|
||
|
if_f0,
|
||
|
filter_radius,
|
||
|
tgt_sr,
|
||
|
resample_sr,
|
||
|
rms_mix_rate,
|
||
|
version,
|
||
|
f0_file=f0_file,
|
||
|
protect=protect
|
||
|
)
|
||
|
wavfile.write(output_path, tgt_sr, audio_opt)
|
||
|
return('processed')
|
||
|
|
||
|
|
||
|
def get_vc(model_path):
|
||
|
global n_spk,tgt_sr,net_g,vc,cpt,device,is_half, version
|
||
|
print("loading pth %s"%model_path)
|
||
|
cpt = torch.load(model_path, map_location="cpu")
|
||
|
tgt_sr = cpt["config"][-1]
|
||
|
cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk
|
||
|
if_f0=cpt.get("f0",1)
|
||
|
version = cpt.get("version", "v1")
|
||
|
if(if_f0==1):
|
||
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half)
|
||
|
else:
|
||
|
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
|
del net_g.enc_q
|
||
|
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
||
|
net_g.eval().to(device)
|
||
|
if (is_half):net_g = net_g.half()
|
||
|
else:net_g = net_g.float()
|
||
|
vc = VC(tgt_sr, config)
|
||
|
n_spk=cpt["config"][-3]
|
||
|
# return {"visible": True,"maximum": n_spk, "__type__": "update"}
|
||
|
|
||
|
if(using_cli):
|
||
|
vc_single(sid=0,input_audio_path=input_path,f0_up_key=f0_up_key,f0_file=None,f0_method=f0_method,file_index=file_index,file_index2="",index_rate=1,filter_radius=3,resample_sr=0,rms_mix_rate=0,model_path=model_path,output_path=output_path)
|