2023-03-31 11:54:38 +02:00
|
|
|
|
import os,sys,torch,warnings,pdb
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
|
|
|
import librosa
|
|
|
|
|
import importlib
|
|
|
|
|
import numpy as np
|
|
|
|
|
import hashlib , math
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from uvr5_pack.lib_v5 import spec_utils
|
|
|
|
|
from uvr5_pack.utils import _get_name_params,inference
|
|
|
|
|
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
|
|
|
|
from scipy.io import wavfile
|
|
|
|
|
|
|
|
|
|
class _audio_pre_():
|
|
|
|
|
def __init__(self, model_path,device,is_half):
|
|
|
|
|
self.model_path = model_path
|
|
|
|
|
self.device = device
|
|
|
|
|
self.data = {
|
|
|
|
|
# Processing Options
|
|
|
|
|
'postprocess': False,
|
|
|
|
|
'tta': False,
|
|
|
|
|
# Constants
|
|
|
|
|
'window_size': 512,
|
|
|
|
|
'agg': 10,
|
|
|
|
|
'high_end_process': 'mirroring',
|
|
|
|
|
}
|
|
|
|
|
nn_arch_sizes = [
|
|
|
|
|
31191, # default
|
|
|
|
|
33966,61968, 123821, 123812, 537238 # custom
|
|
|
|
|
]
|
|
|
|
|
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
|
|
|
|
model_size = math.ceil(os.stat(model_path ).st_size / 1024)
|
|
|
|
|
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
|
|
|
|
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
|
|
|
|
model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
|
|
|
|
|
param_name ,model_params_d = _get_name_params(model_path , model_hash)
|
|
|
|
|
|
|
|
|
|
mp = ModelParameters(model_params_d)
|
|
|
|
|
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
|
|
|
|
cpk = torch.load( model_path , map_location='cpu')
|
|
|
|
|
model.load_state_dict(cpk)
|
|
|
|
|
model.eval()
|
2023-04-11 12:14:55 +02:00
|
|
|
|
if(is_half):model = model.half().to(device)
|
2023-03-31 11:54:38 +02:00
|
|
|
|
else:model = model.to(device)
|
|
|
|
|
|
|
|
|
|
self.mp = mp
|
|
|
|
|
self.model = model
|
|
|
|
|
|
|
|
|
|
def _path_audio_(self, music_file ,ins_root=None,vocal_root=None):
|
|
|
|
|
if(ins_root is None and vocal_root is None):return "No save root."
|
|
|
|
|
name=os.path.basename(music_file)
|
|
|
|
|
if(ins_root is not None):os.makedirs(ins_root, exist_ok=True)
|
|
|
|
|
if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True)
|
|
|
|
|
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
|
|
|
|
bands_n = len(self.mp.param['band'])
|
|
|
|
|
# print(bands_n)
|
|
|
|
|
for d in range(bands_n, 0, -1):
|
|
|
|
|
bp = self.mp.param['band'][d]
|
|
|
|
|
if d == bands_n: # high-end band
|
|
|
|
|
X_wave[d], _ = librosa.core.load(#理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
|
|
|
|
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
|
|
|
|
if X_wave[d].ndim == 1:
|
|
|
|
|
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
|
|
|
|
else: # lower bands
|
|
|
|
|
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
|
|
|
|
# Stft of wave source
|
|
|
|
|
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
|
|
|
|
|
# pdb.set_trace()
|
|
|
|
|
if d == bands_n and self.data['high_end_process'] != 'none':
|
|
|
|
|
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
|
|
|
|
|
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
|
|
|
|
|
|
|
|
|
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
|
|
|
|
aggresive_set = float(self.data['agg']/100)
|
|
|
|
|
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data)
|
|
|
|
|
# Postprocess
|
|
|
|
|
if self.data['postprocess']:
|
|
|
|
|
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
|
|
|
|
pred = spec_utils.mask_silence(pred, pred_inv)
|
|
|
|
|
y_spec_m = pred * X_phase
|
|
|
|
|
v_spec_m = X_spec_m - y_spec_m
|
|
|
|
|
|
|
|
|
|
if (ins_root is not None):
|
|
|
|
|
if self.data['high_end_process'].startswith('mirroring'):
|
|
|
|
|
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
|
|
|
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_)
|
|
|
|
|
else:
|
|
|
|
|
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
|
|
|
|
print ('%s instruments done'%name)
|
|
|
|
|
wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) #
|
|
|
|
|
if (vocal_root is not None):
|
|
|
|
|
if self.data['high_end_process'].startswith('mirroring'):
|
|
|
|
|
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
|
|
|
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
|
|
|
|
else:
|
|
|
|
|
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
|
|
|
|
print ('%s vocals done'%name)
|
|
|
|
|
wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16"))
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
device = 'cuda'
|
|
|
|
|
is_half=True
|
|
|
|
|
model_path='uvr5_weights/2_HP-UVR.pth'
|
|
|
|
|
pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True)
|
|
|
|
|
audio_path = '神女劈观.aac'
|
|
|
|
|
save_path = 'opt'
|
|
|
|
|
pre_fun._path_audio_(audio_path , save_path,save_path)
|