2023-03-31 11:47:00 +02:00
|
|
|
import torch
|
|
|
|
from torch.nn import functional as F
|
|
|
|
|
2023-04-15 13:44:24 +02:00
|
|
|
|
2023-03-31 11:47:00 +02:00
|
|
|
def feature_loss(fmap_r, fmap_g):
|
|
|
|
loss = 0
|
|
|
|
for dr, dg in zip(fmap_r, fmap_g):
|
|
|
|
for rl, gl in zip(dr, dg):
|
|
|
|
rl = rl.float().detach()
|
|
|
|
gl = gl.float()
|
|
|
|
loss += torch.mean(torch.abs(rl - gl))
|
|
|
|
|
|
|
|
return loss * 2
|
|
|
|
|
|
|
|
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
|
|
|
loss = 0
|
|
|
|
r_losses = []
|
|
|
|
g_losses = []
|
|
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
|
|
dr = dr.float()
|
|
|
|
dg = dg.float()
|
|
|
|
r_loss = torch.mean((1 - dr) ** 2)
|
|
|
|
g_loss = torch.mean(dg**2)
|
|
|
|
loss += r_loss + g_loss
|
|
|
|
r_losses.append(r_loss.item())
|
|
|
|
g_losses.append(g_loss.item())
|
|
|
|
|
|
|
|
return loss, r_losses, g_losses
|
|
|
|
|
|
|
|
|
|
|
|
def generator_loss(disc_outputs):
|
|
|
|
loss = 0
|
|
|
|
gen_losses = []
|
|
|
|
for dg in disc_outputs:
|
|
|
|
dg = dg.float()
|
|
|
|
l = torch.mean((1 - dg) ** 2)
|
|
|
|
gen_losses.append(l)
|
|
|
|
loss += l
|
|
|
|
|
|
|
|
return loss, gen_losses
|
|
|
|
|
|
|
|
|
|
|
|
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
|
|
|
"""
|
|
|
|
z_p, logs_q: [b, h, t_t]
|
|
|
|
m_p, logs_p: [b, h, t_t]
|
|
|
|
"""
|
|
|
|
z_p = z_p.float()
|
|
|
|
logs_q = logs_q.float()
|
|
|
|
m_p = m_p.float()
|
|
|
|
logs_p = logs_p.float()
|
|
|
|
z_mask = z_mask.float()
|
|
|
|
|
|
|
|
kl = logs_p - logs_q - 0.5
|
|
|
|
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
|
|
|
kl = torch.sum(kl * z_mask)
|
|
|
|
l = kl / torch.sum(z_mask)
|
|
|
|
return l
|