2023-04-08 17:36:25 +02:00
|
|
|
from infer_pack.models_onnx import SynthesizerTrnMs256NSFsid
|
|
|
|
import torch
|
|
|
|
|
|
|
|
person = "Shiroha/shiroha.pth"
|
|
|
|
exported_path = "model.onnx"
|
|
|
|
|
|
|
|
|
|
|
|
cpt = torch.load(person, map_location="cpu")
|
2023-04-15 13:44:24 +02:00
|
|
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
2023-04-08 17:36:25 +02:00
|
|
|
print(*cpt["config"])
|
|
|
|
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=False)
|
|
|
|
net_g.load_state_dict(cpt["weight"], strict=False)
|
|
|
|
|
|
|
|
test_phone = torch.rand(1, 200, 256)
|
|
|
|
test_phone_lengths = torch.tensor([200]).long()
|
2023-04-15 13:44:24 +02:00
|
|
|
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
|
2023-04-08 17:36:25 +02:00
|
|
|
test_pitchf = torch.rand(1, 200)
|
|
|
|
test_ds = torch.LongTensor([0])
|
|
|
|
test_rnd = torch.rand(1, 192, 200)
|
|
|
|
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
2023-04-15 13:44:24 +02:00
|
|
|
output_names = [
|
|
|
|
"audio",
|
|
|
|
]
|
|
|
|
device = "cpu"
|
|
|
|
torch.onnx.export(
|
|
|
|
net_g,
|
|
|
|
(
|
|
|
|
test_phone.to(device),
|
|
|
|
test_phone_lengths.to(device),
|
|
|
|
test_pitch.to(device),
|
|
|
|
test_pitchf.to(device),
|
|
|
|
test_ds.to(device),
|
|
|
|
test_rnd.to(device),
|
|
|
|
),
|
|
|
|
exported_path,
|
|
|
|
dynamic_axes={
|
|
|
|
"phone": [1],
|
|
|
|
"pitch": [1],
|
|
|
|
"pitchf": [1],
|
|
|
|
"rnd": [2],
|
|
|
|
},
|
|
|
|
do_constant_folding=False,
|
|
|
|
opset_version=16,
|
|
|
|
verbose=False,
|
|
|
|
input_names=input_names,
|
|
|
|
output_names=output_names,
|
|
|
|
)
|