1
0
mirror of synced 2025-01-18 17:14:05 +01:00

fix: 卸载音色省显存

顺便将所有print换成了统一的logger
This commit is contained in:
源文雨 2023-09-01 15:18:08 +08:00
parent 8d5a77dbe9
commit 04a33b9709
23 changed files with 189 additions and 106 deletions

View File

@ -5,6 +5,10 @@ from multiprocessing import cpu_count
import torch
import logging
logger = logging.getLogger(__name__)
def use_fp32_config():
for config_file in [
@ -110,11 +114,11 @@ class Config:
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
print("Found GPU", self.gpu_name, ", force to fp32")
logger.info("Found GPU", self.gpu_name, ", force to fp32")
self.is_half = False
use_fp32_config()
else:
print("Found GPU", self.gpu_name)
logger.info("Found GPU", self.gpu_name)
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
@ -128,12 +132,12 @@ class Config:
with open("infer/modules/train/preprocess.py", "w") as f:
f.write(strr)
elif self.has_mps():
print("No supported Nvidia GPU found")
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "mps"
self.is_half = False
use_fp32_config()
else:
print("No supported Nvidia GPU found")
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "cpu"
self.is_half = False
use_fp32_config()
@ -160,7 +164,7 @@ class Config:
x_center = 30
x_max = 32
if self.dml:
print("Use DirectML instead")
logger.info("Use DirectML instead")
if (
os.path.exists(
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
@ -188,7 +192,7 @@ class Config:
self.is_half = False
else:
if self.instead:
print(f"Use {self.instead} instead")
logger.info(f"Use {self.instead} instead")
if (
os.path.exists(
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"

View File

@ -1,5 +1,5 @@
import os
import pdb
import logging
import sys
os.environ["OMP_NUM_THREADS"] = "2"
@ -11,6 +11,8 @@ now_dir = os.getcwd()
sys.path.append(now_dir)
import multiprocessing
logger = logging.getLogger(__name__)
class Harvest(multiprocessing.Process):
def __init__(self, inp_q, opt_q):
@ -356,7 +358,7 @@ if __name__ == "__main__":
)
if event == "start_vc" and self.flag_vc == False:
if self.set_values(values) == True:
print("Use CUDA:" + str(torch.cuda.is_available()))
logger.info("Use CUDA:" + str(torch.cuda.is_available()))
self.start_vc()
settings = {
"pth_path": values["pth_path"],
@ -545,8 +547,8 @@ if __name__ == "__main__":
):
while self.flag_vc:
time.sleep(self.config.block_time)
print("Audio block passed.")
print("ENDing VC")
logger.debug("Audio block passed.")
logger.debug("ENDing VC")
def audio_callback(
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
@ -623,7 +625,7 @@ if __name__ == "__main__":
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
print("sola_offset =" + str(int(sola_offset)))
logger.debug("sola_offset =" + str(int(sola_offset)))
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
@ -663,7 +665,7 @@ if __name__ == "__main__":
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000))
print("Infer time:" + str(total_time))
logger.info("Infer time:" + str(total_time))
def get_devices(self, update: bool = True):
"""获取设备列表"""
@ -716,8 +718,8 @@ if __name__ == "__main__":
sd.default.device[1] = output_device_indices[
output_devices.index(output_device)
]
print("Input device:" + str(sd.default.device[0]) + ":" + str(input_device))
print(
logger.info("Input device:" + str(sd.default.device[0]) + ":" + str(input_device))
logger.info(
"Output device:" + str(sd.default.device[1]) + ":" + str(output_device)
)

View File

@ -18,11 +18,10 @@ class I18nAuto:
if not os.path.exists(f"./i18n/locale/{language}.json"):
language = "en_US"
self.language = language
# print("Use Language:", language)
self.language_map = load_language_list(language)
def __call__(self, key):
return self.language_map.get(key, key)
def print(self):
print("Use Language:", self.language)
def __repr__(self):
return "Use Language: " + self.language

View File

@ -32,6 +32,8 @@ from infer.modules.vc.modules import VC
logging.getLogger("numba").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
@ -58,7 +60,7 @@ if config.dml == True:
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
i18n = I18nAuto()
i18n.print()
logger.info(i18n)
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
@ -213,7 +215,7 @@ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
% (trainset_dir, sr, n_p, now_dir, exp_dir)
+ str(config.noparallel)
)
print(cmd)
logger.info(cmd)
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
@ -232,7 +234,7 @@ def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
logger.info(log)
yield log
@ -254,7 +256,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
f0method,
)
)
print(cmd)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
@ -281,7 +283,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
exp_dir,
config.is_half,
)
print(cmd)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
@ -304,7 +306,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
exp_dir,
)
)
print(cmd)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
@ -320,7 +322,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
logger.info(log)
yield log
####对不同part分别开多进程
"""
@ -342,7 +344,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
exp_dir,
version19,
)
print(cmd)
logger.info(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
@ -364,7 +366,7 @@ def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvp
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
logger.info(log)
yield log
@ -378,12 +380,12 @@ def change_sr2(sr2, if_f0_3, version19):
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if not if_pretrained_generator_exist:
print(
logger.warn(
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
"not exist, will not use pretrained model",
)
if not if_pretrained_discriminator_exist:
print(
logger.warn(
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
"not exist, will not use pretrained model",
)
@ -414,12 +416,12 @@ def change_version19(sr2, if_f0_3, version19):
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
)
if not if_pretrained_generator_exist:
print(
logger.warn(
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
"not exist, will not use pretrained model",
)
if not if_pretrained_discriminator_exist:
print(
logger.warn(
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
"not exist, will not use pretrained model",
)
@ -443,12 +445,12 @@ def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
)
if not if_pretrained_generator_exist:
print(
logger.warn(
"assets/pretrained%s/f0G%s.pth" % (path_str, sr2),
"not exist, will not use pretrained model",
)
if not if_pretrained_discriminator_exist:
print(
logger.warn(
"assets/pretrained%s/f0D%s.pth" % (path_str, sr2),
"not exist, will not use pretrained model",
)
@ -556,14 +558,14 @@ def click_train(
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
print("Write filelist done")
logger.debug("Write filelist done")
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
print("Use gpus:", gpus16)
logger.info("Use gpus:", gpus16)
if pretrained_G14 == "":
print("No pretrained Generator")
logger.info("No pretrained Generator")
if pretrained_D15 == "":
print("No pretrained Discriminator")
logger.info("No pretrained Discriminator")
if gpus16:
cmd = get_quoted_python_cmd() + ' infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s' % (
exp_dir1,
@ -599,7 +601,7 @@ def click_train(
version19,
)
)
print(cmd)
logger.info(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
@ -646,7 +648,7 @@ def train_index(exp_dir1, version19):
)
except:
info = traceback.format_exc()
print(info)
logger.info(info)
infos.append(info)
yield "\n".join(infos)

View File

@ -1,7 +1,6 @@
import math
import os
import pdb
from time import time as ttime
import logging
logger = logging.getLogger(__name__)
import numpy as np
import torch
@ -616,7 +615,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -732,7 +731,7 @@ class SynthesizerTrnMs768NSFsid(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -845,7 +844,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()
@ -951,7 +950,7 @@ class SynthesizerTrnMs768NSFsid_nono(nn.Module):
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()

View File

@ -1,7 +1,6 @@
import math
import os
import pdb
from time import time as ttime
import logging
logger = logging.getLogger(__name__)
import numpy as np
import torch
@ -620,7 +619,7 @@ class SynthesizerTrnMsNSFsidM(nn.Module):
)
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
self.speaker_map = None
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
logger.debug("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
def remove_weight_norm(self):
self.dec.remove_weight_norm()

View File

@ -3,10 +3,13 @@ import numpy as np
import onnxruntime
import soundfile
import logging
logger = logging.getLogger(__name__)
class ContentVec:
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
print("Load model(s) from {}".format(vec_path))
logger.info("Load model(s) from {}".format(vec_path))
if device == "cpu" or device is None:
providers = ["CPUExecutionProvider"]
elif device == "cuda":

View File

@ -7,6 +7,10 @@ import torch.nn.functional as F
from librosa.util import normalize, pad_center, tiny
from scipy.signal import get_window
import logging
logger = logging.getLogger(__name__)
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
def window_sumsquare(
@ -691,4 +695,4 @@ if __name__ == "__main__":
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
t1 = ttime()
print(f0.shape, t1 - t0)
logger.info(f0.shape, t1 - t0)

View File

@ -1,5 +1,7 @@
import os
import traceback
import logging
logger = logging.getLogger(__name__)
import numpy as np
import torch
@ -110,7 +112,7 @@ class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
try:
spec = torch.load(spec_filename)
except:
print(spec_filename, traceback.format_exc())
logger.warn(spec_filename, traceback.format_exc())
spec = spectrogram_torch(
audio_norm,
self.filter_length,
@ -302,7 +304,7 @@ class TextAudioLoader(torch.utils.data.Dataset):
try:
spec = torch.load(spec_filename)
except:
print(spec_filename, traceback.format_exc())
logger.warn(spec_filename, traceback.format_exc())
spec = spectrogram_torch(
audio_norm,
self.filter_length,

View File

@ -1,6 +1,8 @@
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
import logging
logger = logging.getLogger(__name__)
MAX_WAV_VALUE = 32768.0
@ -51,9 +53,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False)
"""
# Validation
if torch.min(y) < -1.07:
print("spectrogram_torch min value is ", torch.min(y))
logger.debug("min value is ", torch.min(y))
if torch.max(y) > 1.07:
print("spectrogram_torch max value is ", torch.max(y))
logger.debug("max value is ", torch.max(y))
# Window - Cache if needed
global hann_window

View File

@ -33,7 +33,7 @@ def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1):
try:
new_state_dict[k] = saved_state_dict[k]
if saved_state_dict[k].shape != state_dict[k].shape:
print(
logger.warn(
"shape-%s-mismatch. need: %s, get: %s"
% (k, state_dict[k].shape, saved_state_dict[k].shape)
) #
@ -109,7 +109,7 @@ def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
try:
new_state_dict[k] = saved_state_dict[k]
if saved_state_dict[k].shape != state_dict[k].shape:
print(
logger.warn(
"shape-%s-mismatch|need-%s|get-%s"
% (k, state_dict[k].shape, saved_state_dict[k].shape)
) #
@ -207,7 +207,7 @@ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
f_list = glob.glob(os.path.join(dir_path, regex))
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
x = f_list[-1]
print(x)
logger.debug(x)
return x

View File

@ -1,5 +1,7 @@
import os
import sys
import logging
logger = logging.getLogger(__name__)
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
@ -82,7 +84,7 @@ def main():
n_gpus = 1
if n_gpus < 1:
# patch to unblock people without gpus. there is probably a better way.
print("NO GPU DETECTED: falling back to CPU - this may take a while")
logger.warn("NO GPU DETECTED: falling back to CPU - this may take a while")
n_gpus = 1
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
@ -209,7 +211,7 @@ def run(rank, n_gpus, hps):
if hps.pretrainG != "":
if rank == 0:
logger.info("loaded pretrained %s" % (hps.pretrainG))
print(
logger.info(
net_g.module.load_state_dict(
torch.load(hps.pretrainG, map_location="cpu")["model"]
)
@ -217,7 +219,7 @@ def run(rank, n_gpus, hps):
if hps.pretrainD != "":
if rank == 0:
logger.info("loaded pretrained %s" % (hps.pretrainD))
print(
logger.info(
net_d.module.load_state_dict(
torch.load(hps.pretrainD, map_location="cpu")["model"]
)

View File

@ -1,4 +1,6 @@
import os
import logging
logger = logging.getLogger(__name__)
import librosa
import numpy as np
@ -88,7 +90,7 @@ class Predictor:
def __init__(self, args):
import onnxruntime as ort
print(ort.get_available_providers())
logger.info(ort.get_available_providers())
self.args = args
self.model_ = get_models(
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
@ -101,7 +103,7 @@ class Predictor:
"CPUExecutionProvider",
],
)
print("ONNX load done")
logger.info("ONNX load done")
def demix(self, mix):
samples = mix.shape[-1]

View File

@ -1,5 +1,7 @@
import os
import traceback
import logging
logger = logging.getLogger(__name__)
import ffmpeg
import torch
@ -92,5 +94,5 @@ def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format
traceback.print_exc()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("Executed torch.cuda.empty_cache()")
logger.info("Executed torch.cuda.empty_cache()")
yield "\n".join(infos)

View File

@ -1,4 +1,6 @@
import os
import logging
logger = logging.getLogger(__name__)
import librosa
import numpy as np
@ -116,7 +118,7 @@ class AudioPre:
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
logger.info("%s instruments done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
@ -150,7 +152,7 @@ class AudioPre:
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
logger.info("%s vocals done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
@ -283,7 +285,7 @@ class AudioPreDeEcho:
)
else:
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
print("%s instruments done" % name)
logger.info("%s instruments done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(
@ -317,7 +319,7 @@ class AudioPreDeEcho:
)
else:
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
print("%s vocals done" % name)
logger.info("%s vocals done" % name)
if format in ["wav", "flac"]:
sf.write(
os.path.join(

View File

@ -1,4 +1,6 @@
import traceback
import logging
logger = logging.getLogger(__name__)
import numpy as np
import soundfile as sf
@ -30,14 +32,7 @@ class VC:
self.config = config
def get_vc(self, sid, *to_return_protect):
person = f'{os.getenv("weight_root")}/{sid}'
print(f"Loading: {person}")
self.cpt = torch.load(person, map_location="cpu")
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
logger.info("Get sid: " + sid)
to_return_protect0 = {
"visible": self.if_f0 != 0,
@ -54,6 +49,57 @@ class VC:
"__type__": "update",
}
if not sid:
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
logger.info("Clean model cache")
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr # ,cpt
self.hubert_model = self.net_g = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
if self.version == "v1":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
elif self.version == "v2":
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs768NSFsid(
*self.cpt["config"], is_half=self.config.is_half
)
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
return (
{"visible": False, "__type__": "update"},
{
"visible": True,
"value": to_return_protect0,
"__type__": "update",
},
{
"visible": True,
"value": to_return_protect1,
"__type__": "update",
},
"",
"",
)
person = f'{os.getenv("weight_root")}/{sid}'
logger.info(f"Loading: {person}")
self.cpt = torch.load(person, map_location="cpu")
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
self.if_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
synthesizer_class = {
("v1", 1): SynthesizerTrnMs256NSFsid,
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
@ -77,7 +123,7 @@ class VC:
self.pipeline = Pipeline(self.tgt_sr, self.config)
n_spk = self.cpt["config"][-3]
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
print("Select index:", index["value"])
logger.info("Select index: " + index["value"])
return (
(
@ -165,7 +211,7 @@ class VC:
)
except:
info = traceback.format_exc()
print(info)
logger.warn(info)
return info, (None, None)
def vc_multi(

View File

@ -1,6 +1,9 @@
import os
import sys
import traceback
import logging
logger = logging.getLogger(__name__)
from functools import lru_cache
from time import time as ttime
@ -139,7 +142,7 @@ class Pipeline(object):
if not hasattr(self, "model_rmvpe"):
from infer.lib.rmvpe import RMVPE
print(
logger.info(
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
)
self.model_rmvpe = RMVPE(
@ -152,7 +155,7 @@ class Pipeline(object):
if "privateuseone" in str(self.device): # clean ortruntime memory
del self.model_rmvpe.model
del self.model_rmvpe
print("Cleaning ortruntime memory")
logger.info("Cleaning ortruntime memory")
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))

View File

@ -13,9 +13,10 @@ logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
i18n = I18nAuto()
i18n.print()
logger.info(i18n)
load_dotenv()
config = Config()

View File

@ -1,7 +1,8 @@
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import os
import sys
import logging
logger = logging.getLogger(__name__)
import torch
import torch.nn as nn
@ -55,7 +56,7 @@ def main(path, root):
torch.manual_seed(114514)
model_a = torch.load(path, map_location="cpu")["weight"]
print("Query:\t\t%s\t%s" % (path, model_hash(path)))
logger.info("Query:\t\t%s\t%s" % (path, model_hash(path)))
map_attn_a = {}
map_rand_input = {}
@ -82,7 +83,7 @@ def main(path, root):
sim = torch.mean(torch.cosine_similarity(attn_a, attn_b))
sims.append(sim)
print(
logger.info(
"Reference:\t%s\t%s\t%s"
% (path, model_hash(path), f"{torch.mean(torch.stack(sims)) * 1e2:.2f}%")
)

View File

@ -3,7 +3,8 @@
对源特征进行检索
"""
import os
import pdb
import logging
logger = logging.getLogger(__name__)
import parselmouth
import torch
@ -15,7 +16,6 @@ from time import time as ttime
# import pyworld
import librosa
import numpy as np
import scipy.signal as signal
import soundfile as sf
import torch.nn.functional as F
from fairseq import checkpoint_utils
@ -34,7 +34,7 @@ from scipy.io import wavfile
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = r"E:\codes\py39\vits_vc_gpu_train\assets\hubert\hubert_base.pt" #
print("Load model(s) from {}".format(model_path))
logger.info("Load model(s) from {}".format(model_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
@ -77,7 +77,7 @@ net_g = SynthesizerTrn256(
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
# weights=torch.load("infer/ft-mi-sim1k.pt")
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
print(net_g.load_state_dict(weights, strict=True))
logger.debug(net_g.load_state_dict(weights, strict=True))
net_g.eval().to(device)
net_g.half()
@ -198,4 +198,4 @@ for idx, name in enumerate(
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
print(ta0, ta1, ta2) #
logger.debug(ta0, ta1, ta2) #

View File

@ -3,6 +3,9 @@
"""
import os
import traceback
import logging
logger = logging.getLogger(__name__)
from multiprocessing import cpu_count
import faiss
@ -23,11 +26,11 @@ big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
if big_npy.shape[0] > 2e5:
# if(1):
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
print(info)
logger.info(info)
try:
big_npy = (
MiniBatchKMeans(
@ -42,7 +45,7 @@ if big_npy.shape[0] > 2e5:
)
except:
info = traceback.format_exc()
print(info)
logger.warn(info)
np.save("tools/infer/big_src_feature_mi.npy", big_npy)
@ -50,14 +53,14 @@ np.save("tools/infer/big_src_feature_mi.npy", big_npy)
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
index = faiss.index_factory(768, "IVF%s,Flat" % n_ivf) # mi
print("Training...")
logger.info("Training...")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index, "tools/infer/trained_IVF%s_Flat_baseline_src_feat_v2.index" % (n_ivf)
)
print("Adding...")
logger.info("Adding...")
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])

View File

@ -2,6 +2,8 @@
格式直接cid为自带的index位aid放不下了通过字典来查反正就5w个
"""
import os
import logging
logger = logging.getLogger(__name__)
import faiss
import numpy as np
@ -13,19 +15,19 @@ for name in sorted(list(os.listdir(inp_root))):
phone = np.load("%s/%s" % (inp_root, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
print(big_npy.shape) # (6196072, 192)#fp32#4.43G
logger.debug(big_npy.shape) # (6196072, 192)#fp32#4.43G
np.save("infer/big_src_feature_mi.npy", big_npy)
##################train+add
# big_npy=np.load("/bili-coeus/jupyter/jupyterhub-liujing04/vits_ch/inference_f0/big_src_feature_mi.npy")
print(big_npy.shape)
logger.debug(big_npy.shape)
index = faiss.index_factory(256, "IVF512,Flat") # mi
print("Training...")
logger.info("Training...")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 9
index.train(big_npy)
faiss.write_index(index, "infer/trained_IVF512_Flat_mi_baseline_src_feat.index")
print("Adding...")
logger.info("Adding...")
index.add(big_npy)
faiss.write_index(index, "infer/added_IVF512_Flat_mi_baseline_src_feat.index")
"""

View File

@ -1,6 +1,9 @@
import os
import sys
import traceback
import logging
logger = logging.getLogger(__name__)
from time import time as ttime
import fairseq
@ -67,7 +70,7 @@ class RVC:
if index_rate != 0:
self.index = faiss.read_index(index_path)
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
print("Index search enabled")
logger.info("Index search enabled")
self.index_path = index_path
self.index_rate = index_rate
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
@ -102,7 +105,7 @@ class RVC:
else:
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del self.net_g.enc_q
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
logger.debug(self.net_g.load_state_dict(cpt["weight"], strict=False))
self.net_g.eval().to(device)
# print(2333333333,device,config.device,self.device)#net_g是devicehubert是config.device
if config.is_half:
@ -111,7 +114,7 @@ class RVC:
self.net_g = self.net_g.float()
self.is_half = config.is_half
except:
print(traceback.format_exc())
logger.warn(traceback.format_exc())
def change_key(self, new_key):
self.f0_up_key = new_key
@ -120,7 +123,7 @@ class RVC:
if new_index_rate != 0 and self.index_rate == 0:
self.index = faiss.read_index(self.index_path)
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
print("Index search enabled")
logger.info("Index search enabled")
self.index_rate = new_index_rate
def get_f0_post(self, f0):
@ -237,7 +240,7 @@ class RVC:
if hasattr(self, "model_rmvpe") == False:
from infer.lib.rmvpe import RMVPE
print("Loading rmvpe model")
logger.info("Loading rmvpe model")
self.model_rmvpe = RMVPE(
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
# "rmvpe.pt", is_half=False, device=self.device####dml配置
@ -295,10 +298,10 @@ class RVC:
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
)
else:
print("Index search FAILED or disabled")
logger.warn("Index search FAILED or disabled")
except:
traceback.print_exc()
print("Index search FAILED")
logger.warn("Index search FAILED")
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
t3 = ttime()
if self.if_f0 == 1:
@ -338,5 +341,5 @@ class RVC:
.float()
)
t5 = ttime()
print("Spent time: fea =", t2 - t1, ", index =", t3 - t2, ", f0 =", t4 - t3, ", model =", t5 - t4)
logger.info("Spent time: fea =", t2 - t1, ", index =", t3 - t2, ", f0 =", t4 - t3, ", model =", t5 - t4)
return infered_audio